Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 064213    DOI: 10.1088/1674-1056/22/6/064213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Characterization of spectral hole depth in Tm3+:YAG within cryogenic temperature range

Chen Lei (陈雷)a b, Ma Xiu-Rong (马秀荣)a b, Wang Wei (王伟)a b, Zhang Shuang-Gen (张双根)b, Mu Kuan-Lin (穆宽林)a b, Wang Xia-Yang (王夏洋)a b, Zhang Shi-Yu (张世宇)a b
a Engineering Research Center on Communication Devices (Ministry of Education), School of Computer and Communication Engineering, Tianjin University of Technology, Tianjin 300384, China;
b Tianjin Key Laboratory of Film Electronic and Communication Device, School of Electronic Information Engineering, Tianjin University of Technology, Tianjin 300384, China
Abstract  In this paper, spectral hole depth dependence on temperature below 10 K in Tm3+:YAG crystal is investigated in detail. A novel model is proposed to analyze the temperature dependence on spectral hole. By using the proposed model, we theoretically deduce the temperature dependence of spectral hole depth. The results are compared with experimental results and they are in good agreement. According to the theoretic results, the optimum temperature in experiment can be found.
Keywords:  phonon process      spectral hole depth      spectral hole width      Tm3+:YAG  
Received:  22 August 2012      Revised:  10 December 2012      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  63.20.-e (Phonons in crystal lattices)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  42.70.-a (Optical materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004152) and the Science Fund of Tianjin Education Commission (Grant Nos. 20090715 and 20110704).
Corresponding Authors:  Ma Xiu-Rong     E-mail:  maxiurong@gmail.com

Cite this article: 

Chen Lei (陈雷), Ma Xiu-Rong (马秀荣), Wang Wei (王伟), Zhang Shuang-Gen (张双根), Mu Kuan-Lin (穆宽林), Wang Xia-Yang (王夏洋), Zhang Shi-Yu (张世宇) Characterization of spectral hole depth in Tm3+:YAG within cryogenic temperature range 2013 Chin. Phys. B 22 064213

[1] Guillaume G, Adrien C, Vincent C, Ivan L, Le Gouet J L and Fabien B 2007 J. Opt. Soc. Am. B 24 457
[2] Braker B and Wagner K 2010 Appl. Opt. 49 E121
[3] Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Tittel W, Bussiéres F, George M, Ricken R and Sohler W 2011 Nature 469 7331
[4] Hetet G, Wilkowski D and Chaneliere T 2012 arXiv: 1208.0677v1 [quant-ph]
[5] Li Y Z, Philip H, Chulhong Kim, Zhang H L and Wang L H 2008 Opt. Express 16 14862
[6] Louchet C A, Romain L, Philippe G, François R, Thierry C and Le Gouët J L 2011 in Proc. SPIE: Advances in Photonics of Quantum Computing, Memory and Communication IV Vol 7948 ed. Hasan Z U, Hemmer P R, Lee H and Santori C M, January 25-27, 2011, San Francisco, California, USA
[7] Mitsunaga M 1992 Opt. Quantum Electron. 31 1137
[8] Barber Z M, Harrington C, Thiel C W and Babbitt W R 2010 J. Lumin. 130 1614
[9] Wang W, Ma X R, Chen L, Zhang S G and Zhao J 2012 Chin. Phys. Lett. 29 100601
[10] Michael J T, Lars R, Tara M F, Matthew S K and Till R 2011 arXiv: 1106.0520v1 [physics.atom-ph]
[11] Chaneliere T, Bonarota M, Damon V, Lauro R, Ruggiero J, Lorgere I and Le Gouet J L 2010 arXiv: 1106.0520v1 [physics.atom-ph]
[12] McCumber D E and Sturge M D 1963 J. Appl. Phys 13 1682
[13] Macfarlane R M 2000 J. Lumin. 85 181
[14] Strickland N M, Cone R L and Macfarlane R M 1999 Phys. Rev. B 59 1428
[15] Mohan R K, Chang T J, Tian M Z, Bekker S, Olson A, Ostranderr C, Khallaayoun A, Dollinger C, Babbitt W R, Cloe Z, Reibel R R, Merkel K D, Sun Y, Cone R, Schlotttau F and Wangner K H 2007 J. Lumin. 127 116
[16] Wang G M, Equall R W, Cone R L, Leask M J M, Godfrey K W and Wondre F R 1996 Opt. Lett. 21 818
[17] Guillot N, Goldner P, Antic F E and Le Gouët J L 2005 Phys Rev. B 71 174409
[18] Luo Z D 2003 Spectrum Physics of Solid State Laser Materials (Xia Men: Fujian Science and Technology Press) pp. 91-100 (in Chinese)
[19] Deng H X, Jiang X D, Xiang X, Sun K, Yuan X D, Zheng W G, Gao F and Zu X T 2010 Chin. Phys. B 19 107801
[20] Tiseanu C, Lupei A and Lupei V 1995 J. Phys.: Condens. Matter 7 8477
[1] Femtosecond laser-induced Cu plasma spectra at different laser polarizations and sample temperatures
Yitong Liu(刘奕彤), Qiuyun Wang(王秋云), Luyun Jiang(蒋陆昀), Anmin Chen(陈安民), Jianhui Han(韩建慧), and Mingxing Jin(金明星). Chin. Phys. B, 2022, 31(10): 105201.
[2] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[3] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[4] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[5] Interrogation of optical Ramsey spectrum and stability study of an 87Sr optical lattice clock
Jing-Jing Xia(夏京京), Xiao-Tong Lu(卢晓同), and Hong Chang(常宏). Chin. Phys. B, 2022, 31(3): 034209.
[6] Observation of photon recoil effects in single-beam absorption spectroscopy with an ultracold strontium gas
Fachao Hu(胡发超), Canzhu Tan(檀灿竹), Yuhai Jiang(江玉海), Matthias Weidemüller, and Bing Zhu(朱兵). Chin. Phys. B, 2022, 31(1): 016702.
[7] An approach to gas sensors based on tunable diode laser incomplete saturated absorption spectra
Wei Nie(聂伟), Zhen-Yu Xu(许振宇), Rui-Feng Kan(阚瑞峰), Mei-Rong Dong(董美蓉), and Ji-Dong Lu(陆继东). Chin. Phys. B, 2021, 30(6): 064213.
[8] A pressure-calibration method of wavelength modulation spectroscopy in sealed microbial growth environment
Kun-Yang Wang(王坤阳), Jie Shao(邵杰), Li-Gang Shao(邵李刚), Jia-Jin Chen(陈家金), Gui-Shi Wang(王贵师), Kun Liu(刘琨), and Xiao-Ming Gao(高晓明). Chin. Phys. B, 2021, 30(5): 054203.
[9] A 532 nm molecular iodine optical frequency standard based on modulation transfer spectroscopy
Feihu Cheng(程飞虎), Ning Jin(金宁), Fenglei Zhang(张风雷), Hui Li(李慧), Yuanbo Du(杜远博), Jie Zhang(张洁), Ke Deng(邓科), and Zehuang Lu(陆泽晃). Chin. Phys. B, 2021, 30(5): 050603.
[10] Setup of a dipole trap for all-optical trapping
Miao Wang(王淼), Zheng Chen(陈正), Yao Huang(黄垚), Hua Guan(管桦), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(5): 053702.
[11] Analysis of relative wavelength response characterization and its effects on scanned-WMS gas sensing
Dao Zheng(郑道), Zhi-Min Peng(彭志敏), Yan-Jun Ding(丁艳军), and Yan-Jun Du(杜艳君). Chin. Phys. B, 2021, 30(4): 044210.
[12] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[13] Effect of the distance between focusing lens and target surface on quantitative analysis of Mn element in aluminum alloys by using filament-induced breakdown spectroscopy
Xue-Tong Lu(陆雪童), Shang-Yong Zhao(赵上勇), Xun Gao(高勋), Kai-Min Guo(郭凯敏), and Jing-Quan Lin(林景全). Chin. Phys. B, 2020, 29(12): 124209.
[14] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[15] Progress on the 40Ca+ ion optical clock
Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林). Chin. Phys. B, 2020, 29(7): 074209.
No Suggested Reading articles found!