Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 064206    DOI: 10.1088/1674-1056/22/6/064206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Enhancing stationary optomechanical entanglement with Kerr medium

Zhang Dan (张丹)a, Zhang Xiao-Ping (张小平)b, Zheng Qiang (郑强)c
a School of Chemistry and Material Science, Guizhou Normal University, Guiyang 550001, China;
b Space Science Institute, Macau University of Science and Technology, Avenida Wai Long, Macau, China;
c School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China
Abstract  We theoretically investigate the stationary entanglement of a optomechanical system with additional Kerr medium in the cavity. There are two kinds of interactions in the system, photon-mirror interaction and photon-photon interaction. The optomechanical entanglement created by the former interaction can be effectively controlled by the latter one. We find that the optomechanical entanglement is suppressed by Kerr interaction due to photon blockage. We also find that the Kerr interaction can create the stationary entanglement and induce the resonance of entanglement in the small detuning regime. These results show that the Kerr interaction is an effective controlling knob to the optomechanical system.
Keywords:  optomechanics      Kerr medium      entanglement  
Received:  15 January 2013      Revised:  12 March 2013      Accepted manuscript online: 
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  03.67.Bg (Entanglement production and manipulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11065005 and 11105079), the Governor's Foundation for Science and Education Elites of Guizhou Province and Creative Talent Programme in University of Guizhou Province, China, and the Internationally Scientific and Technological Cooperation Projects of Guizhou Province, China (Grant No. [2011]7026).
Corresponding Authors:  Zheng Qiang     E-mail:  qzhengnju@gmail.com

Cite this article: 

Zhang Dan (张丹), Zhang Xiao-Ping (张小平), Zheng Qiang (郑强) Enhancing stationary optomechanical entanglement with Kerr medium 2013 Chin. Phys. B 22 064206

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Zurek W H 2003 Rev. Mod. Phys. 75 715
[3] Armour A D, Blencowe M P and Schwab K C 2002 Phys. Rev. Lett. 88 148301
[4] Marshall W, Simon C, Penrose R and Bouwmeester D 2003 Phys. Rev. Lett. 91 130401
[5] Kippenberg T J and Vahala K J 2009 Science 321 1172
[6] Aspelmeyer M, Meystre P and Schwab K 2012 Phys. Today 65 29
[7] Thompson J D Zwickl B M, Jayich A M, Marquardt F, Girvin S M and Harris J G E 2008 Nature 452 72
[8] Teufel J D, Castellanos-Beltran M A, Harlow J W and Lehnert K W 2009 Nat. Nano. 4 820
[9] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[10] Sun Q, Hu X, Ji A C and Liu W M 2011 Phys. Rev. A 83 043606
[11] Schwab K C and Roukes M L 2005 Phys. Today 58 36
[12] Hammerer K, Aspelmeyer M, Polzik E S and Zöller P 2009 Phys. Rev. Lett. 102 020501
[13] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[14] Vitali D, Gigan S, Ferreira A, Bohm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[15] Zou C L, Zou X B, Sun F W, Han Z F and Guo G C 2011 Phys. Rev. A 84 032317
[16] Zhou L, Han Y, Jing J and Zhang W P 2011 Phys. Rev. A 83 052117
[17] Nie W, Lan Y H, Li Y and Zhu S Y 2012 Phys. Rev. A 86 063809
[18] Mi X W, Bai J X and Li D J 2012 Chin. Phys. B 21 030303
[19] Ma Y H and Zhou L 2013 Chin. Phys. B 22 024204
[20] Zhang D and Zheng Q 2013 Chin. Phys. Lett. 30 024213
[21] Zhang J, Peng K C and Braunstein S L 2003 Phys. Rev. A 68 013808
[22] Huang S and Agarwal G S 2009 Phys. Rev. A 79 013821
[23] Kumar T, Bhattacherjee A B and ManMohan 2010 Phys. Rev. A 81 013835
[24] Zheng Q, Li S C and Fu L B 2012 Eur. Phys. J. D 66 271
[25] Imamoglu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467
[26] Law C K 1995 Phys. Rev. A 51 2537
[27] Bhattacharya M and Meystre P 2007 Phys. Rev. Lett. 99 153603
[28] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[29] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[30] Abdi M, Barzanjeh Sh, Tombesi P and Vitali D 2011 Phys. Rev. A 84 032325
[31] Hartman M J, Brandao F G S L and Plenio M B 2006 Nat. Phys. 2 849
[32] Guo X Y, Ren Z Z and Chi Z M 2012 Phys. Rev. A 85 023608
[33] Walls D F and Milburn G J 2008 Quantum Optics 2nd edn. (Berlin: Springer-Verlag)
[34] Asjad M and Saif F 2011 Phys. Rev. A 84 033606
[1] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东),Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[2] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[3] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[4] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[9] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[10] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[11] Nonlocal nonreciprocal optomechanical circulator
Ji-Hui Zheng(郑继会), Rui Peng(彭蕊), Jiong Cheng(程泂), Jing An(安静), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2022, 31(5): 054204.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!