Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047805    DOI: 10.1088/1674-1056/22/4/047805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes

Jiang Rong (江蓉)a, Lu Hai (陆海)a, Chen Dun-Jun (陈敦军)a, Ren Fang-Fang (任芳芳)a, Yan Da-Wei (闫大为)b, Zhang Rong (张荣)a, Zheng You-Dou (郑有炓)a
a Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
b Key Laboratory of Advanced Process Control of the Light Industry (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, China
Abstract  The efficiency droop behaviors of GaN-based green light emitting diodes (LEDs) are studied as a function of temperature from 300 K to 480 K. The overall quantum efficiency of the green LEDs is found to degrade as temperature increases, which is mainly caused by activation of new non-radiative recombination centers within the LED active layer. Meanwhile, the external quantum efficiency of the green LEDs starts to decrease at low injection current level (<1 A/cm2) with a temperature-insensitive peak-efficiency-current. In contrast, the peak-efficiency-current of a control GaN-based blue LED shows continuous up-shift at higher temperatures. Around the onset point of efficiency droop, the electroluminescence spectra of the green LEDs also exhibit a monotonic blue-shift of peak energy and a reduction of full width at half maximum as injection current increases. Carrier delocalization is believed to play an important role in causing the efficiency droop in GaN-based green LEDs.
Keywords:  GaN      green light-emitting diode      efficiency droop      electroluminescence  
Received:  10 September 2012      Revised:  28 September 2012      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  85.60.Jb (Light-emitting devices)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the State Key Program for Basic Research of China (Grant Nos. 2010CB327504, 2011CB301900, and 2011CB922100), the National Natural Science Foundation of China (Grant Nos. 60825401, 60936004, and 11104130), and the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK2012110, BK2011556, and BK2011050).
Corresponding Authors:  Lu Hai     E-mail:  hailu@nju.edu.cn

Cite this article: 

Jiang Rong (江蓉), Lu Hai (陆海), Chen Dun-Jun (陈敦军), Ren Fang-Fang (任芳芳), Yan Da-Wei (闫大为), Zhang Rong (张荣), Zheng You-Dou (郑有炓) Temperature-dependent efficiency droop behaviors of GaN-based green light-emitting diodes 2013 Chin. Phys. B 22 047805

[1] Ponce F A and Bour D P 1997 Nature 386 351
[2] Pimputkar S, Speck J S, Denbaars S P and Nakamura S 2009 Nat. Photon. 3 180
[3] Piprek J 2010 Phys. Status Solidi A 207 2217
[4] Ozgur U, Liu H, Li X, Ni X and Morkoc H 2010 Proc. IEEE 98 1180
[5] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[6] Shen Y C, Mueller G O, Watanabe S, Gardner N F, Munkholm A and Krames M R 2007 Appl. Phys. Lett. 91 141101
[7] Masui H, Kroemer H, Schmidt M C, Kim K C, Fellows N N, Nakamura S J and DenBaars S P 2008 J. Phys. D 41 082001
[8] Yang Y, Cao X A and Yan C H 2008 IEEE Trans. Electron. Dev. 55 1771
[9] Peter M, Laubsch A, Bergbauer W, Meyer T, Sabathil M, Baur J and Hahn B 2009 Phys. Status Solidi A 206 1125
[10] Chen J R, Wu Y C, Ling S C, Ko T S, Lu T C, Kuo H C, Kuo Y K and Wang S C 2010 Appl. Phys. B 98 779
[11] Cao X A, Yang Y and Guo H 2008 J. Appl. Phys. 104 093108
[12] Hader J, Moloney J V and Koch S W 2011 Appl. Phys. Lett. 99 181127
[13] Shin D S, Han D P, Oh J Y and Shim J I 2012 Appl. Phys. Lett. 100 153506
[14] Litwin-Staszewska E, Suski T, Piotrzkowski R, Grzegory I, Bockowski M, Robert J L, Kon'czewicz L, Wasik D, Kamin'ska E, Cote D and Clerjaud B 2001 J. Appl. Phys. 89 7960
[15] Meyaard D S, Shan Q, Cho J, Schubert E F, Han S H, Kim M H, Sone C, Oh S J and Kim J K 2012 Appl. Phys. Lett. 100 081106
[16] Shao X, Lu H, Chen D, Xie Z, Zhang R and Zheng Y 2009 Appl. Phys. Lett. 95 163504
[17] Nguyen H P T, Djavid M, Cui K and Mi Z 2012 Nanotechnology 23 194012
[18] Lu H, Sandvik P, Vertiatchikh A, Tucker J and Elasser A 2006 J. Appl. Phys. 99 114510
[19] Nakamura S 1998 Science 281 956
[20] Liang B L, Wong P S, Nuntawong N, Albrecht A R and Tatebayashi J 2007 Appl. Phys. Lett. 91 243106
[21] Wu Y F, Hsu H P and Liu T Y 2012 Solid-State Electron. 68 63
[22] Piprek J (ed.) 2007 Nitride Semiconductor Devices: Principles and Simulation (Berlin: Wiley-VCH) p. 24
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[7] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[8] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[9] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[10] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
No Suggested Reading articles found!