Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047701    DOI: 10.1088/1674-1056/22/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Non-depletion floating layer in SOI LDMOS for enhancing breakdown voltage and eliminating back-gate bias effect

Zheng Zhi (郑直), Li Wei (李威), Li Ping (李平)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A non-depletion floating layer silicon-on-insulator (NFL SOI) lateral double-diffused metal-oxide-semiconductor (LDMOS) is proposed and the NFL-assisted modulated field (NFLAMF) principle is investigated in this paper. Based on this principle, the floating layer can pin the potential for modulating bulk field. In particular, the accumulated high concentration of holes at the bottom of the NFL can efficiently shield the electric field of the SOI layer and enhance the dielectric field in the buried oxide layer (BOX). At variation of back-gate bias, the shielding charges of NFL can also eliminate back-gate effects. The simulated results indicate that the breakdown voltage (BV) is increased from 315 V to 558 V compared to the conventional reduced surface field (RESURF) SOI (CSOI) LDMOS, yielding a 77% improvement. Furthermore, due to the field shielding effect of the NFL, the device can maintain the same breakdown voltage of 558 V with a thinner BOX to resolve the thermal problem in an SOI device.
Keywords:  breakdown voltage      back-gate bias effect      self-heating effect      silicon-on-insulator  
Received:  02 May 2012      Revised:  11 September 2012      Accepted manuscript online: 
PACS:  77.55.df (For silicon electronics)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  51.50.+v (Electrical properties)  
Corresponding Authors:  Zheng Zhi     E-mail:  zhizh734@gmail.com

Cite this article: 

Zheng Zhi (郑直), Li Wei (李威), Li Ping (李平) Non-depletion floating layer in SOI LDMOS for enhancing breakdown voltage and eliminating back-gate bias effect 2013 Chin. Phys. B 22 047701

[1] Narayanan E M S and Amaratunga G 1995 Proc. ISPSD p. 218
[2] Luo X R, Yao G L, Chen X, Wang Q, Ge R and Udreab F 2011 Chin. Phys. B 20 028501
[3] Wang Y G, Luo X R, Ge R, Wu L J, Chen X, Yao G L, Lei T F, Wang Q, Fan J and Hu X R 2011 Chin. Phys. B 20 077304
[4] Zhang J, He J, Zhou X Y, Zhang L N, Ma Y T, Chen Q, Zhang X K, Yang Z, Wang R F, Han Y and Chan M 2012 Chin. Phys. B 21 047303
[5] Hu S D, Zhang L, Luo X R, Zhang B, Li Z J and Wu L J 2011 Chin. Phys. Lett. 28 128503
[6] Wu L J, Hu S D, Zhang B, Luo X R and Li Z J 2011 Chin. Phys. B 20 087101
[7] Wang Z G, Zhang B, Fu Q, Xie G and Li Z J 2012 IEEE Electron. Dev. Lett. 33 703
[8] Luo X R, Zhang B, Lei T F, Li Z J, Xiao Z Q, Hsu W C W and Udrea F 2010 IEEE Trans. Electron. Dev. 57 3033
[9] Wang W L, Zhang B, Li Z J and Chen W J 2009 IEEE Electron. Dev. Lett. 30 68
[10] Park I Y and Salama C A T 2006 IEEE Trans. Electron. Dev. 53 1909
[11] Qiao M, Zhang B, Li Z J and Fang J 2007 Electron. Lett. 43 1231
[12] Duan B X, Yang Y and Zhang B 2010 Solid-State Electron. 54 685
[13] Schwantes S, Florian T, Stephan T, Graf M and Dudek V 2005 IEEE Trans. Electron. Dev. 52 1649
[14] Luo J X, Chen J, Zhou J H, Wu Q Q, Chai Z, Yu T and Wang X 2012 Chin. Phys. B 21 056602
[15] Nakagawa A, Yamaguchi Y, Yasuhara N, Hirayama K and Funaki H 1996 IEDM Tech. Dig. p. 477
[16] Udrea F, Popescu A and Milne W 1997 Proc. IEEE Int. SOI Conf. p. 102
[17] Hu S D, Zhang B, Li Z J and Luo X R 2010 Chin. Phys. B 19 037303
[18] TMA MEDICI 4.2., Palo Alto, CA: Technology Modeling Associates Inc.
[19] Ludikhuize A W 2000 Proc. ISPSD p. 11
[20] O'Shea S J, Atta R M, Murrell M P and Welland M E 1995 J. Vac. Sci. Technol. B 13 1945
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[4] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[7] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[8] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[9] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[10] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[11] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[12] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[13] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[14] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[15] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
No Suggested Reading articles found!