CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Half-metallic ferromagnetism in C-doped zinc-blende ZnO: A first-principles study |
Dan Xu (但旭)a b, Yao Kai-Lun (姚凯伦)a b, Gao Guo-Ying (高国营)a, Ma Guo-Qiang (马国强)a b |
a School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China; b School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract We perform a first-principles study of electronic structure and magnetism of C-doped zinc-blende ZnO using the full-potential linearized augmented plane wave method. Results show that C-doped zinc-blende ZnO exhibits half-metallic ferromagnetism with a stable ferromagnetic ground state. The calculated magnetic moment of the 32-atom supercell containing one C dopant is 2.00 μ B, and the C dopant contributes most. The calculated low formation energy suggests that C-doped zinc-blende ZnO is energetically stable. The hole-mediated double exchange mechanism can be used to explain the ferromagnetism in C-doped zinc-blende ZnO.
|
Received: 15 November 2012
Revised: 28 December 2012
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 11004066 and 11074081) and the Research Foundation for the Doctoral Program of Higher Education of China (Grant Nos. 20100142120080 and 20090142110063). |
Corresponding Authors:
Yao Kai-Lun
E-mail: klyao@mail.hust.edu.cn
|
Cite this article:
Dan Xu (但旭), Yao Kai-Lun (姚凯伦), Gao Guo-Ying (高国营), Ma Guo-Qiang (马国强) Half-metallic ferromagnetism in C-doped zinc-blende ZnO: A first-principles study 2013 Chin. Phys. B 22 047507
|
[1] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[2] |
Sato K and Yoshida H K 2001 Jpn. J. Appl. Phys. Part 2 40 L334
|
[3] |
Schwartz D A, Kittilstved K R and Gamelin D R 2004 Appl. Phys. Lett. 85 1395
|
[4] |
Liu X C, Zhang H W, Zhang T, Chen B Y, Chen Z Z, Song L X and Shi E W 2008 Chin. Phys. B 17 1371
|
[5] |
Hu S J, Yan S S, Zhao M W and Mei L M 2006 Phys. Rev. B 73 245205
|
[6] |
Peng L, Zhang H W, Wen Q Y, Song Y Q, Su H and John Q X 2008 Chin. Phys. Lett. 25 1438
|
[7] |
Park J H, Kim M G, Jang H M, Ryu S and Y M Kim 2004 Appl. Phys. Lett. 84 1338
|
[8] |
Kaspar T C, Droubay T, Heald S M, Engelhard M H, Nachimuthu P and Chambers S A 2008 Phys. Rev. B 77 201303
|
[9] |
Zhou S Q, Potzger K, Borany J V, Grötzschel R, Skorupa W, Helm M and Fassbender J 2008 Phys. Rev. B 77 035209
|
[10] |
Li T J, Gao X X, Li G P and Chen J S 2010 Chin. Phys. Lett. 27 087501
|
[11] |
Fan S W, Yao K L, Liu Z L, Gao G Y, Min Y and Cheng H G 2008 J. Appl. Phys. 104 043912
|
[12] |
Xu X G, Yang H L, Wu Y, Zhang D L and Jiang Y 2012 Chin. Phys. B 21 047504
|
[13] |
Droghetti A and Sanvito S 2009 Appl. Phys. Lett. 94 252505
|
[14] |
Liu C M, Gu H Q, Xiang X, Zhang Y, Jiang Y, Chen M and Zu X T 2011 Chin. Phys. B 20 047505
|
[15] |
Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
|
[16] |
Zhou S Q, Xu Q Y, Potzger K, Talut G, Grötzschel R, Fassbender J, Vinnichenko M, Grenzer J, Helm M, Hochmuth H, Lorenz M, Grundmann M and Schmidt H 2008 Appl. Phys. Lett. 93 232507
|
[17] |
Shen L, Wu R Q, Pan H, Peng G W, Yang M, Sha Z D and Feng Y P 2008 Phys. Rev. B 78 073306
|
[18] |
Jindal K, Tomar M, Katiyar R S and Gupta V 2012 J. Appl. Phys. 111 102805
|
[19] |
Jaffe J E and Hess A C 1993 Phys. Rev. B 48 7903
|
[20] |
Bragg W L and Darbyshire J A 1932 Trans. Faraday Soc. 28 522
|
[21] |
Kim S K, Jeong S Y and Cho C R 2003 Appl. Phys. Lett. 82 562
|
[22] |
Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 1990 Comput. Phys. Commun. 59 399
|
[23] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[24] |
Pan H, Feng Y P, Wu Q Y, Huang Z G and Lin J Y 2008 Phys. Rev. B 77 125211
|
[25] |
Gao G Y and Yao K L 2012 J. Appl. Phys. 112 023712
|
[26] |
Gao G Y, Yao K L, Song M H and Liu Z L 2011 J. Magn. Magn. Mater. 323 2652
|
[27] |
Akai H 1998 Phys. Rev. Lett. 81 3002
|
[28] |
Yang K S, Dai Y, Huang B B and Whangbo M H 2008 Appl. Phys. Lett. 93 132507
|
[29] |
Zhang C W, Wang P J and Li P 2011 Solid State Sci. 13 480
|
[30] |
Buchholz D B, Chang R P H, Song J H and Ketterson J B 2005 Appl. Phys. Lett. 87 082504
|
[31] |
Wu R Q, Peng G W, Liu L, Feng Y P, Huang Z G and Wu Q Y 2006 Appl. Phys. Lett. 89 062505
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|