Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 047305    DOI: 10.1088/1674-1056/22/4/047305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of nanomechanical force on the electronic structure of InAs/GaAs quantum dots

Song Xin (宋鑫), Feng Hao (冯昊), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远)
State Key Laboratory of Information Photonics and Optical Communications,Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  We show nanomechanical force is useful to dynamically control the optical response of self-assembled quantum dots, giving a method to shift electron and heavy hole levels, interval of electron and heavy hole energy levels, and the emission wavelength of quantum dots (QDs). The strain, the electron energy levels, and heavy hole energy levels of InAs/GaAs(001) quantum dots with vertical nanomechanical force are investigated. Both of the lattice mismatch and nanomechanical force are considered at the same time. The results show that the hydrostatic and the biaxial strains inside the QDs subjected to nanomechanical force vary with nanomechanical force. That gives the control for tailoring band gaps and optical response. Moreover, due to strain-modified energy, the band edge is also influenced by nanomechanical force. The nanomechanical force is shown to influence the band edge. As is well known, the band offset affects the electronic structure, which shows that the nanomechanical force is proved to be useful to tailor the emission wavelength of QDs. Our research helps to better understand how the nanomechanical force can be used to dynamically control the optics of quantum dots.
Keywords:  nanomechanical force      quantum dots      energy levels      electronic structure  
Received:  22 August 2012      Revised:  26 September 2012      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.63.Kv (Quantum dots)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  85.35.Gv (Single electron devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, 10979065, and 61275201), the Fundamental Research Funds for the Central Universities (Grant No. 2011RC0402), and the Program for New Century Excellent Talents in University (Grant No. NCET-10-0261).
Corresponding Authors:  Song Xin     E-mail:  songxinbupt@163.com

Cite this article: 

Song Xin (宋鑫), Feng Hao (冯昊), Liu Yu-Min (刘玉敏), Yu Zhong-Yuan (俞重远) Influence of nanomechanical force on the electronic structure of InAs/GaAs quantum dots 2013 Chin. Phys. B 22 047305

[1] ArakawaY and Sakaki H 2002 Appl. Phys. Lett. 40 939
[2] Padiha L A, Neves A R, Rodriguez E, Cesar C L, Barbosa L C and Brito Cruz C H 2005 Appl. Phys. Lett. 86 161111
[3] Sugawara M, Ebe H, Hatori N and Ishida M 2004 Phys. Rev. B 69 35332
[4] Stevenson1 R M, Young R J, See1 P, Gevaux D G, Cooper K, Atkinson P, Farrer I, Ritchie D A and Shields A J 2006 Phys. Rev. B 73 033306
[5] Kowalik1 K, Krebs O, Lemahitre A, Laurent S, Senellart P, Voisin P and Gaj J A 2005 Appl. Phys. Lett. 86 041907
[6] Gerardot B D, Seidl S, Dalgarno P A, Warburton R J, Granados D, Garcia J M, Kowalik K, Krebs O, Karrai K, Badolato A and Petroff P M 2007 Appl. Phys. Lett. 90 041101
[7] Reimer1 M E, Korkusińskil M, Dalacu1 D, Lefebvre1 J, Lapointe1 J, Poole1 P J, Aers1 G C, McKinnon1 W R, Hawrylak P and Williams R L 2008 Phys. Rev. B 78 195301
[8] Muller A, Fang W, Lawall J and Solomon G S 2008 Phys. Rev. Lett. 101 027401
[9] Nakaoka T, Kakitsuka T, Saito T, Kako1 S, Ishida1 S, Nishioka1 M, Yoshikuni Y and Arakawa1 Y 2003 J. Appl. Phys. 94 6812
[10] Gell J R, Ward M B, Young R J, Stevenson R M, Atkinson P, Anderson D, Jones G A C, Ritchie D A and Shields A J 2008 Appl. Phys. Lett. 93 081115
[11] Seidl S, Kroner M, Högele A, Karrai K, Warburton R J, Badolato A and Petroff P M 2006 Appl. Phys. Lett. 88 203113
[12] Ding F, Singh R, Plumhof J D, Zander T, Krápek V, Chen Y H, Benyoucef M, Zwiller V, Dörr K, Bester G, Rastelli1 A and Schmidt O G 2010 Phys. Rev. Lett. 104 067405
[13] Eichenfield M, Camacho R, Chan J, Vahala1 K J and Painter O 2009 Nature 459 550
[14] Zander T, Herklotz A, Kiravittaya S, Benyoucef M, Ding F, Atkinson P, Kumar S, Plumhof J D, Dörr K, Rastelli A and Schmidt O G 2009 Opt. Express 17 22452
[15] Kipp T, Welsch H, Strelow Ch, Heyn Ch and Heitmann D 2006 Phys. Rev. Lett. 96 077403
[16] Mendach S, Songmuang R, Kiravittaya S, Rastelli A, Benyoucef M and Schmidt O G 2006 Appl. Phys. Lett. 88 111120
[17] Li X L 2008 J. Phys. D 41 193001
[18] Vicknesh S, Li F and Mi Z 2009 Appl. Phys. Lett. 94 081101
[19] Ekinci K L, Yang Y T and Roukes M L 2004 J. Appl. Phys. 95 2682
[20] Jensen K, Kim K and Zettl A 2008 Nature Nanotech. 3 533
[21] Blick R H, Qin H, Kim H S and Marsland R 2007 New J. Phys. 9 241
[22] Mahboob I and Yamaguchi H 2008 Nature Nanotech. 3 275
[23] Majdoub M S, Sharma P and Cagin T 2008 Phys. Rev. B 78 121407
[24] LaHaye M D, Buu1 O, Camarota1 B and Schwab K C 2004 Science 304 74
[25] Knobel R G and Cleland A N 2003 Nature 424 291
[26] Wilson-Rae I, Zoller P and Imamoglu A 2004 Phys. Rev. Lett. 92 075507
[27] Hammerer K, Aspelmeyer M, Polzik E S and Zoller P 2009 Phys. Rev. Lett. 102 020501
[28] Liu Y M, Yu Z Y and Ren X M 2008 Chin. Phys. Lett. 251850
[29] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 1056
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[5] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[6] Ridge regression energy levels calculation of neutral ytterbium (Z = 70)
Yushu Yu(余雨姝), Chen Yang(杨晨), and Gang Jiang(蒋刚). Chin. Phys. B, 2023, 32(3): 033101.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Energy levels and transition data of 3p63d8 and 3p53d9 configurations in Fe-like ions (Z = 57, 60, 62, 64, 65)
Bao-Ling Shi(施宝玲), Yi Qin(秦毅), Xiang-Fu Li(李向富), Bang-Lin Deng(邓邦林), Gang Jiang(蒋刚), and Xi-Long Dou(豆喜龙). Chin. Phys. B, 2022, 31(5): 053102.
No Suggested Reading articles found!