CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic transition and large reversible magnetocaloric effect in EuCu1.75P2 compound |
Huo De-Xuan (霍德璇)a b, Liao Luo-Bing (廖罗兵)a, Li Ling-Wei (李领伟)a b, Li Miao (李妙)a, Qian Zheng-Hong (钱正洪 )b |
a Institute of Materials Physics, Hangzhou Dianzi University, Hangzhou 310018, China; b Center for Integrated Spintronic Device, Hangzhou Dianzi University, Hangzhou 310018, China |
|
|
Abstract The magnetocaloric effect (MCE) in EuCu1.75P2 compound is studied by the magnetization and heat capacity measurements. Magnetization and modified Arrott plots indicate that the compound undergoes a second-order phase transition at TC~51 K. A large reversible MCE is observed around TC. The values of maximum magnetic entropy change (-ΔSMmax) reach 5.6 J·kg-1·K-1 and 13.3 J·kg-1·K-1 for the field change of 2 T and 7 T, respectively, with no obvious hysteresis loss in the vicinity of Curie temperature. The corresponding maximum adiabatic temperature changes (ΔTadmax) are evaluated to be 2.1 K and 5.0 K. The magnetic transition and the origin of large MCE in EuCu1.75P2 are also discussed.
|
Received: 01 June 2012
Revised: 30 June 2012
Accepted manuscript online:
|
PACS:
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11004044) and the Zhejiang Provincial Natural Science Foundation, China (Grant No. Y4110581). |
Corresponding Authors:
Huo De-Xuan
E-mail: dxhuo@hdu.edu.cn
|
Cite this article:
Huo De-Xuan (霍德璇), Liao Luo-Bing (廖罗兵), Li Ling-Wei (李领伟), Li Miao (李妙), Qian Zheng-Hong (钱正洪 ) Magnetic transition and large reversible magnetocaloric effect in EuCu1.75P2 compound 2013 Chin. Phys. B 22 027502
|
[1] |
Kitanovski A and Egolf P W 2010 Int. J. Refrig. 38 449
|
[2] |
Gschneidner K A, Pecharsky V K Jr and Tsoko A O 2005 Rep. Prog. Phys. 68 1479
|
[3] |
Oliveira N A and Ranke P J 2010 Phys. Rep. 489 89
|
[4] |
Geng Y X, Tegus O and Bi L G 2012 Chin. Phys. B 21 037504
|
[5] |
Zou J D 2012 Chin. Phys. B 21 037503
|
[6] |
Wang F, Shen B G, Zhang J, Sun J R, Meng F B and Li Y X 2010 Chin. Phys. B 19 067501
|
[7] |
Ma S C, Wang D H, Xuan H C, Shen L J, Cao Q Q and Du Y W 2011 Chin. Phys. B 20 087502
|
[8] |
Li Z, Jing C, Zhang H L, Cao S X and Zhang J C 2011 Chin. Phys. B 20 047502
|
[9] |
Li L, Nishimura K, Hutchison D W, Qian Z, Huo D and Namiki T 2012 Appl. Phys. Lett. 100 152403
|
[10] |
Flores1 R C, Franco V, Conde A, Knipling K E and Willard M A 2011 Appl. Phys. Lett. 98 102505
|
[11] |
Zhang Q, Cho J H, Li B, Hu W J and Zhang Z D 2010 Appl. Phys. Lett. 94 182501
|
[12] |
Li L, Nishimura K, Usui G, Huo D and Qian Z 2012 Intermetallics 23 101
|
[13] |
Shen J, Zhao J L, Hu F X, Wu J F, Sun J R and Shen B G 2010 Chin. Phys. B 19 047502
|
[14] |
Hui X D, Xu Z Y, Wang E R, Chen G L and Lu Z P 2012 Chin. Phys. Lett. 27 117502
|
[15] |
Steglich F, Aarts J, Bredl C D, Lieke W, Meschede D, Franz W and Sehafer H 1977 Phys. Rev. Lett. 43 1892
|
[16] |
Yoshimura K, Nitta T, Mekata M, Shimizu T, Sakakibara T, Goto T and Kido G 1988 Phys. Rev. Lett. 60 851
|
[17] |
Mathur N D, Grosche F M, Julian S R, Walker I R, Freye D M, Haselwimmer R K W and Lonzarich G G 1998 Nature 394 39
|
[18] |
Ren Z, Zhu Z W, Jiang S, Xu X F, Tao Q, Wang C, Feng C M, Cao G H and Xu Z A 2008 Phys. Rev. B 78 052501
|
[19] |
Ren Z, Tao Q, Shuai J, Feng C M, Wang C, Dai J H, Cao G H and Xu Z A, 2009 Phys. Rev. Lett. 102 137002
|
[20] |
Ni B, Abd-Elmeguid M M, Micklitz H, Sanchez J P, Vulliet P and Johrendt D 2001 Phys. Rev. B 63 100102
|
[21] |
Huo D, Lin J, Tang G, Li L, Qian Z and Takabatake T 2011 J. Phys.: Conf. Ser. 263 012014
|
[22] |
Kim M S, Sung N H, Son Y, Ko M S and Cho B K 2011 Appl. Phys. Lett. 98 172509
|
[23] |
Banerjee S K 1964 Phys. Lett. 12 16
|
[24] |
Fisher M E 1967 Rep. Prog. Phys. 30 615
|
[25] |
Widom B 1964 J. Chem. Phys. 41 1633
|
[26] |
Kaul S N 1978 J. Magn. Magn. Mater. 7 113
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|