Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 027501    DOI: 10.1088/1674-1056/22/2/027501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effective-field and Monte Carlo studies of mixed spin-2 and spin-1/2 Ising diamond chain

Liu Wei-Jie (刘伟杰), Xin Zi-Hua (辛子华), Chen Si-Lun (陈思伦), Zhang Cong-Yan (张聪艳 )
College of Science, Shanghai University, Shanghai 200444, China
Abstract  The magnetic properties of a mixed spin-2 and spin-1/2 ferromagnetic diamond chain are studied by effective-field theory and Monte Carlo (MC) simulation based on Ising model. The temperature dependences of magnetization, magnetic susceptibility, internal energy, and specific heat are studied, respectively. The exchange interaction dependences of magnetization and the critical temperature are calculated by MC simulation. The changes of magnetization depend on field increasing and then field decreasing under steady-static conditions are also given.
Keywords:  Ising diamond chain      effective-field theory      Monte Carlo simulation      magnetic property  
Received:  22 May 2012      Revised:  12 June 2012      Accepted manuscript online: 
PACS:  75.10.Pq (Spin chain models)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
Fund: Project supported by the Shanghai Leading Academic Disciplines Project, China (Grant No. T0104) and the National Natural Science Foundation of China (Grant No. 10674092).
Corresponding Authors:  Xin Zi-Hua     E-mail:  zhxin@staff.shu.edu.cn

Cite this article: 

Liu Wei-Jie (刘伟杰), Xin Zi-Hua (辛子华), Chen Si-Lun (陈思伦), Zhang Cong-Yan (张聪艳 ) Effective-field and Monte Carlo studies of mixed spin-2 and spin-1/2 Ising diamond chain 2013 Chin. Phys. B 22 027501

[1] Kaneyoshi T, Mielnicki J, Balcerzak T and Wiatrowski G G 1990 Phys. Rev. B 42 4388
[2] Grollau S 2002 Phys. Rev. E 65 056130
[3] Bobak, Abubrig F O and Balcerzak T 2003 Phys. Rev. B 68 224405
[4] Luo M B 2003 Int. J. Mod. Phys. B 17 4267
[5] Fu H H, Yao K L and Liu Z L 2006 Phys. Rev. B 73 104454
[6] Kikuchi H, Fujii Y, Chiba M, Mitsudo S and Idehara T 2003 Physica B 329 967
[7] Wei G Z, Gu Y W and Liu J 2006 Phys. Rev. B 74 024422
[8] Yao K L, Liu Q M and Liu Z L 2004 Phys. Rev. B 70 224430
[9] Yao X Y, Dong S, Yu H and Liu J M 2006 Phys. Rev. B 74 134421
[10] Maignan, Hardy V, Hébert S, Drillon M, Lees M R, Petrenko O, Paul D M K and Khomskii D 2004 J. Mater. Chem. 14 1231
[11] Tonegawa T, Okamoto K, Hikihara T, Takahashi Y and Kaburagi M 2001 J. Phys. Chem. Soli. 62 125
[12] Wang H T 2002 J. Phys: Condens. Matter 14 8033
[13] Li Y C 2007 J. Appl. Phys. 102 113907
[14] Li Y C and Li S S 2008 Phys. Rev. B 78 184412
[15] Gu B and Su G 2007 Phys. Rev. B 75 174437
[16] Takano K and Suzuki H 2009 Phys. Rev. B 80 104410
[17] Mikeska H J and Luckmann C 2008 Phys. Rev. B 77 054405
[18] Kikuchi H, Fujii Y, Chiba M, Mitsudo S, Idehara T, Tonegawa T, Okamoto K, Sakai T, Kuwai T and Ohta H 2005 Phys. Rev. Lett. 94 227201
[19] Ohta H, Okubo S, Amikawa T, Kunimoto T, Inagaki Y, Kikuchi H, Saito T, Azuma M and Takano M 2003 J. Phys. Soc. Jpn. 72 2464
[20] Hase M, Kohno M, Kitazawa H, Suzuki O, Ozawa K, Kido G, Imai M and Hu X 2005 Phys. Rev. B 72 172412
[21] Hase M, Kohno M, Kitazawa H, Tsujii N, Suzuki O, Ozawa K, Kido G, Imai M and Hu X 2006 Phys. Rev. B 73 104419
[22] Ishii M, Tanaka H, Hori M, Uekusa H, Ohashi Y, Tatani K, Narumi Y and Kindo K 2000 J. Phys. Soc. Jpn. 69 340
[23] Rule K C, Wolter A U B, Sullow S, Tennant D A, Bruhl A, Kohler S, Wolf B, Lang M and Schreuer J 2008 Phys. Rev. Lett. 100 117202
[24] Rajca A, Wongstriratanakul J and Rajca S 2001 Science 294 1503
[25] Jiang W, Guan H Y, Wang Z and Guo A B 2012 Physica B 407 378
[26] Bayram D, Yasin P and Mustafa K 2011 Chin. Phys. B 20 060507
[27] Jiang W, Guan H Y and Lo V C 2011 Chin. Phys. B 20 057501
[28] Kaneyoshi T 1993 Acta Phys. Pol. A 83 703
[29] kaneyoshi T, Nakamura Y and Shin S 1998 J. Phys.: Condens. Matter 10 7025
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[4] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[5] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[6] Magnetic and electronic properties of two-dimensional metal-organic frameworks TM3(C2NH)12
Zhen Feng(冯振), Yi Li(李依), Yaqiang Ma(马亚强), Yipeng An(安义鹏), and Xianqi Dai(戴宪起). Chin. Phys. B, 2021, 30(9): 097102.
[7] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[8] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[9] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[10] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[11] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[12] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[13] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[14] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[15] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
No Suggested Reading articles found!