Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(3): 033202    DOI: 10.1088/1674-1056/22/3/033202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Linewidth of electromagnetically induced transparency under motional averaging in coated vapor cell

Xu Zhi-Xiang (徐智翔)a, Qu Wei-Zhi (曲伟智)a, Gao Ran (高然)b, Hu Xin-Hua (胡新华)b, Xiao Yan-Hong (肖艳红)a
a Department of Physics, State Key Laboratory of Surface Physics, Laboratory of Advanced Materials, and Key Laboratory of Micro and Nano Photonic Structures of Ministry of Education, Fudan University, Shanghai 200433, China;
b Department of Material Science, Fudan University, Shanghai 200433, China
Abstract  The linewidth of electromagnetically induced transparency (EIT) in a coated Rb vapor cell was studied under a magnetic field gradient. The nonlinear broadening of the EIT linewidth with the magnetic field gradient was observed. It was found that the motional averaging of the field gradient was more pronounced at higher laser intensities and larger beam sizes. In the same regime, there was a small linewidth decrease with the increasing magnetic field gradient. We have established a Monte–Carlo model, which gave results in good qualitative agreement with our experiment. Physics pictures for the above phenomena were also suggested. These results provide an understanding of the EIT linewidth behavior under the motional averaging, and should be useful for applications in quantum optics and metrology based on coated vapor cells.
Keywords:  electromagnetically induced transparency      coated cell      linewidth      motional averaging  
Received:  12 October 2012      Revised:  30 November 2012      Accepted manuscript online: 
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.62.Fi (Laser spectroscopy)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078013 and J1103204), the Shanghai Pujiang Program, China (Grant No. 10PJ1401400), the National Basic Research Program of China (Grant Nos. 2011CB921604 and 2012CB921604), and the Fudan University, China.
Corresponding Authors:  Xiao Yan-Hong     E-mail:  yxiao@fudan.edu.cn

Cite this article: 

Xu Zhi-Xiang (徐智翔), Qu Wei-Zhi (曲伟智), Gao Ran (高然), Hu Xin-Hua (胡新华), Xiao Yan-Hong (肖艳红) Linewidth of electromagnetically induced transparency under motional averaging in coated vapor cell 2013 Chin. Phys. B 22 033202

[1] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[2] Balabas M V, Jensen K, Wasilewski W, Krauter H, Madsen L S, Muller J H, Fernholz T and Polzik E S 2010 Opt. Expr. 18 5825
[3] Balabas M V, Karaulanov T, Ledbetter M P and Budker D 2010 Phys. Rev. Lett. 105 070801
[4] Klein M, Novikova I, Phillips D F and Walsworth R L 2006 J. Mod. Opt. 53 2583
[5] Klein M, Hohensee M, Phillips D F and Walsworth R L 2011 Phys. Rev. A 83 013826
[6] Xiao Y H, Klein M, Hohensee M, Jiang L, Phillips D F, Lukin M D and Walsworth R L 2008 Phys. Rev. Lett. 101 043601
[7] Watanabe S F and Robinson H G 1977 J. Phys. B: Atom. Molec. Phys. 10 pp. 931-939, 941-957, 959-965
[8] Novikova I, Xiao Y H, Phillips D F and Walsworth R L 2005 J. Mod. Opt. 52 2381
[9] Pustelny S, Jackson Kimball D F, Rochester S M, Yashchuk V V and Budker D 2006 Phys. Rev. A 74 063406
[10] Xiao Y H, Novikova I, Phillips D F and Walsworth R L 2006 Phys. Rev. Lett. 96 043601
[11] Xiao Y H, Novikova I, Phillips D F and Walsworth R L 2008 Opt. Expr. 16 14128
[12] Ramsey N F 1956 Molecular Beams (Oxford: Clarendon)
[13] Shahriar M S, Hemmer P R, Katz D P, Lee A and Prentiss M G 1997 Phys. Rev. A 55 2272
[14] Budker D, Hollberg L, Kimball D F, Kitching J, Pustelny S and Yashchuk V V 2005 Phys. Rev. A 71 012903
[15] Steckelmacher W 1986 Rep. Prog. Phys. 49 1083
[16] Feres R and Yablonsky G 2004 Chemical Engineering Science 59 1541
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[3] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[4] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[5] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[6] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[7] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[8] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[9] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[10] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[11] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[12] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
[13] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[14] A low noise, high fidelity cross phase modulation in multi-level atomic medium
Liangwei Wang(王亮伟), Jia Guan(关佳), Chengjie Zhu(朱成杰), Runbing Li(李润兵), and Jing Shi(石兢). Chin. Phys. B, 2021, 30(11): 114204.
[15] Electromagnetically induced transparency and electromagnetically induced absorption in Y-type system
Kalan Mal, Khairul Islam, Suman Mondal, Dipankar Bhattacharyya, Amitava Bandyopadhyay. Chin. Phys. B, 2020, 29(5): 054211.
No Suggested Reading articles found!