|
|
High-intensity molecular harmonic generation without ionization |
Wang Jun (王俊)a, Chen Gao (陈高)b, Guo Fu-Ming (郭福明)a, Li Su-Yu (李苏宇)a, Chen Ji-Gen (陈基根)c, Yang Yu-Jun (杨玉军)a |
a Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; b School of Science, Changchun University of Science and Technology, Changchun 130022, China; c Department of Physics and Materials Engineering, Taizhou University, Taizhou 318000, China |
|
|
Abstract We theoretically investigate the high-order harmonic generation from H2+ in an infrared laser field. Our numerical simulations show that there exists a highly efficient plateau structure in the molecular harmonic spectrum. Under the action of the infrared laser pulse, the bound electronic wave packet in a potential well has enough time to tunnel through the effective potential barrier, which is formed by the molecular potential and the infrared laser field, and then recombine with the neighboring nucleus emitting a harmonic photon. During the entire dynamic process, because the wave packet is mainly located in the effective potential, the diffusion effect is of no significance, and thus a highly efficient harmonic plateau can be achieved. Specifically, the cut-off frequency of the plateau is linearly scaled with the peak amplitude of the infrared laser electric field, which may open another route to examine the internuclear distance of the molecule. Furthermore, one may detect the molecular bond lengths using the harmonic plateau.
|
Received: 01 November 2012
Revised: 19 December 2012
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922200), the National Natural Science Foundation of China (Grant Nos. 11274141 and 11034003), and the Natural Science Foundation of Zhejiang Province, China (Grant No. Y6110578). |
Corresponding Authors:
Yang Yu-Jun
E-mail: yangyj@jlu.edu.cn
|
Cite this article:
Wang Jun (王俊), Chen Gao (陈高), Guo Fu-Ming (郭福明), Li Su-Yu (李苏宇), Chen Ji-Gen (陈基根), Yang Yu-Jun (杨玉军) High-intensity molecular harmonic generation without ionization 2013 Chin. Phys. B 22 033203
|
[1] |
McPherson A, Gibson G, Jara U, Johann H, Luk T S, McIntyre I A, Boyer K and Rhodes C K J 1987 Opt. Soc. Am. B 4 595
|
[2] |
Miyazaki K, Kaku M, Miyaji G, Abdurrouf A and Faisal F H M 2005 Phys. Rev. Lett. 95 243903
|
[3] |
Spielmann Ch, Burnett N H, Sartania S, Koppitsch R, Kan C, Lenzner M, Wobrauschek P and Krausz F 1997 Science 278 661
|
[4] |
Paul P M, Toma E S, Breger P, Mullot G, Auge F, Balcou P, Muller H G and Agostini P 2001 Science 292 1689
|
[5] |
Chen J G, Li C, Chi F P and Yang Y J 2007 Chin. Phys. Lett. 24 86
|
[6] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[7] |
Lewenstein M, Balcou P, Ivanov M Y, L'Huillier A and Corkum P B 1994 Phys. Rev. A 49 2117
|
[8] |
Itatani J, Levesue J, Zeidler D, Niikura H, Pépin H, Kieffer J C, Corkum P B and Villeneuve D M 2004 Nature 432 867
|
[9] |
Lein M 2005 Phys. Rev. Lett. 94 053004
|
[10] |
Ramakrishna S and Seideman T 2007 Phys. Rev. Lett. 99 113901
|
[11] |
McFarland B K, Farrell J P, Bucksbaum P H and Gühr M 2008 Science 332 1232
|
[12] |
Wörner H J, Bertrand J B, Kartasho D V, Corkum P B and Villeneuve D M 2010 Nature 446 604
|
[13] |
Lock R M, Ramakrishna S, Zhou X, Kapteyn H C, Murnane M M and Seideman T 2012 Phys. Rev. Lett. 108 133901
|
[14] |
Zwan E V and Lein M 2012 Phys. Rev. Lett. 108 043004
|
[15] |
Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. A 66 023805
|
[16] |
Wang B B, Li X F and Fu P M 1998 Chin. Phys. Lett. 15 195
|
[17] |
Sansone G, Benedetti E, Caleari F, Vozzi C, Avaldi L, Flammini R, Poletto L, Villoresi P, Altucci C, Velotta R, Stagira S, Silvestri S and Nisoli M 2006 Science 314 443
|
[18] |
Goulielmakis E, Schultze M, Fstetter M, Yakovlev V S, Garnon J, Uiberacker M, Aquila A L, Gullikson E M, Attwood D T, Kienberger R, Krausz F and Kleineberg U 2008 Science 320 1614
|
[19] |
Chen J G, Yang Y J, Zeng S L and Liang H Q 2011 Phys. Rev. A 83 023401
|
[20] |
Chen G, Chen J G, Yang Y J, Zhu H Y, Du W H, Chi F P and Zhu Q R 2005 Chin. Phys. Lett. 22 584
|
[21] |
Sanpera A, Watson J B, Lewenstein M and Burnett K 1996 Phys. Rev. A 54 4320
|
[22] |
Ishikawa K 2003 Phys. Rev. Lett. 91 043002
|
[23] |
Wang B B, Cheng T W, Li X F, Fu P M, Chen S and Liu J 2005 Phys. Rev. A 72 063412
|
[24] |
Lein M, Hay N, Velotta R, Marangos J P and Knight P L 2002 Phys. Rev. A 66 023805
|
[25] |
Person E, Burgdorfer J and Grafe S 2009 New J. Phys. 11 105035
|
[26] |
Yang Y J, Chen J G, Chen G and Zhu Q R 2004 Chin. Phys. Lett. 21 652
|
[27] |
Zhao J and Zhao Z X 2010 Chin. Phys. Lett. 27 063301
|
[28] |
Takemoto N and Becker A 2011 J. Chem. Phys. 134 074309
|
[29] |
Yang Y J, Chen J G, Chi F P, Zhu Q R, Zhang H X and Sun J Z 2007 Chin. Phys. Lett. 24 1537
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|