Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 024204    DOI: 10.1088/1674-1056/22/2/024204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Electromagnetically induced transparency and quadripartite macroscopic entanglement generated in a ring cavity

Ma Yong-Hong (马永红)a b, Zhou Ling (周玲)a
a School of Physics and Optoelectronics Engineering, Dalian University of Technology, Dalian 116024, China;
b School of Mathematics, Physics and Biological Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
Abstract  We propose a feasible scheme to generate electromagnetically induced transparency (EIT) and quadripartite macroscopic entanglement in an optomechanical system with one fixed mirror and three movable perfectly reflecting mirrors. We explore the EIT phenomena in this optomechanical system. Results show the appearance of EIT dips in the output field. Moreover, we demonstrate how steady-state quadripartite entanglement can be generated via radiation pressure. We also quantify the bipartite entanglement in each field-mirror subsystem and in the mirror-mirror subsystem. Findings show that a high intensity of entanglement between two subsystems can be achieved.
Keywords:  electromagnetically induced transparency      optomechanical system      quadripartite macroscopic entanglement  
Received:  25 May 2012      Revised:  21 June 2012      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11164018 and 11074028); the Postdoctoral Science Foundation of China (Grant No. 2011M500808); and the Key Project of the Chinese Ministry of Education (Grant No. 212028).
Corresponding Authors:  Ma Yong-Hong, Zhou Ling     E-mail:  myh_dlut@126.com; zhlhxn@dlut.edu.cn

Cite this article: 

Ma Yong-Hong (马永红), Zhou Ling (周玲) Electromagnetically induced transparency and quadripartite macroscopic entanglement generated in a ring cavity 2013 Chin. Phys. B 22 024204

[1] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Huang S and Agarwal G S 2011 Phys. Rev. A 83 043826
[4] Rocheleau T, Ndukum T, Macklin C, Hertzberg J B, Clerk A A and Schwab K C 2010 Nature 463 72
[5] O'Connell A D, Hofheinz M and Ansmann M 2010 Nature 464 697
[6] Brown K R, Ospelkaus C, Colombe Y, Wilson A C and Leibfried D 2011 Nature 471 196
[7] Liao J Q and Law C K 2011 Phys. Rev. A 83 033820
[8] Khalili F, Danilishin S, Miao H, Müller-Ebhardt H, Yang H and Chen Y 2010 Phys. Rev. Lett. 105 070403
[9] Miao H, Zhao C, Ju L and Blair D G 2009 Phys. Rev. A 79 063801
[10] Zhao C, Ju L, Miao H, Gras S, Fan Y and Blair D G 2009 Phys. Rev. Lett. 102 243902
[11] Mi X W, Bai J X and Li D J 2012 Chin. Phys. B 21 030303
[12] Zou H L, Xu J X and Jiang J 2008 Chin. Phys. B 17 117
[13] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[14] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A 78 032316
[15] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[16] Zhang J, Peng K and Braunstein S L 2003 Phys. Rev. A 68 013808
[17] Pinard M, Dantan A, Vitali D, Arcizet O, Briant T and Heidmann A 2005 Europhys. Lett. 72 747
[18] Huang S M and Agarwal G S 2009 New J. Phys. 11 103044
[19] Paternostro M, Vitali D, Gigan S, Kim M S, Brukner C, Eisert J and Aspelmeyer M 2007 Phys. Rev. Lett. 99 250401
[20] Ian H, Liu Y X and Nori F 2010 Phys. Rev. A 81 063823
[21] Roghani M, Breuer H B and Helm H 2010 Phys. Rev. A 81 033418
[22] Li Z H, Li Y, Dou Y F and Zhang J X 2012 Chin. Phys. B 21 034204
[23] Lee Y C, Tsai C C, Chang Y Y, Huang C H and Chui H C 2011 Chin. Phys. B 20 073101
[24] Niu J Y, Pei L Y, Wu L A and Fu P M 2010 Chin. Phys. B 19 113209
[25] Luo B, Hang C, Li H J and Huang G X 2010 Chin. Phys. B 19 054214
[26] Weis S, Riviére R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520
[27] Eisaman M D, André A, Massou F, Fleischhauer M and Zibrov A S 2005 Nature 438 837
[28] Appel J, Figueroa E, Korystov D, Lobino M and Lvovsky A I 2008 Phys. Rev. Lett. 100 093602
[29] Lobino M, Kupchak C, Figueroa E and Lvovsky A I 2009 Phys. Rev. Lett. 102 203601
[30] Kocharovskaya O, Rostovtsev Y and Scully M O 2001 Phys. Rev. Lett. 86 628
[31] Han Y, Cheng J and Zhou L 2011 J. Phys. B: At. Mol. Opt. Phys. 44 165505
[32] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803
[33] Weis S, Riviére R, Deléglise S and Gavartin E 2010 Science 300 1520
[34] Lin Q, Rosenberg J, Chang D and Camachom R 2010 Nat. Photon. 4 236
[35] Safavi-Naeini A H, Mayer Alegre T P, Chan J and Eichenfield M 2011 Nature 472 69
[36] Gröblacher S, Hammerer K, Vanner M R and Aspelmeyer M 2009 Nature 460 724
[37] Gorodetsky M L, Schliesser A, Anetsberger G, Deleglise S and Kippenberg T J 2010 Opt. Express 18 23236
[38] Gardiner C W and Zoller P 1991 Quantum Noise (Berlin: Springer-Verlag)
[39] Giovannetti V and Vitali D 2001 Phys. Rev. A 63 023812
[40] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[41] Laurat J, Keller G and Oliveira-Huguenin J A 2005 J. Opt. B: Quantum Semiclass. Opt. 7 S577
[42] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[43] Adesso G, Serafini A and Illuminati F 2004 Phys. Rev. A 70 022318
[44] Gigan S, Böhm H R, Paternostro M and Blaser F 2006 Nature 444 67
[45] Kleckner D and Bouwmeester D 2006 Nature 444 75
[46] Marquardt F, Chen J P, Clerk A A and Girvin S M 2007 Phys. Rev. Lett. 99 093902
[1] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[5] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[8] Transient electromagnetically induced transparency spectroscopy of 87Rb atoms in buffer gas
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Zeng-Li Ba(巴曾立), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(7): 073201.
[9] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[10] Quantum properties near the instability boundary in optomechanical system
Han-Hao Fang(方晗昊), Zhi-Jiao Deng(邓志姣), Zhigang Zhu(朱志刚), and Yan-Li Zhou(周艳丽). Chin. Phys. B, 2022, 31(3): 030308.
[11] An analytical model for cross-Kerr nonlinearity in a four-level N-type atomic system with Doppler broadening
Dinh Xuan Khoa, Nguyen Huy Bang, Nguyen Le Thuy An, Nguyen Van Phu, and Le Van Doai. Chin. Phys. B, 2022, 31(2): 024201.
[12] High resolution spectroscopy of Rb in magnetic field by far-detuning electromagnetically induced transparency
Zi-Shan Xu(徐子珊), Han-Mu Wang(王汉睦), Ming-Hao Cai(蔡明皓), Shu-Hang You(游书航), and Hong-Ping Liu(刘红平). Chin. Phys. B, 2022, 31(12): 123201.
[13] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[14] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[15] High-resolution three-dimensional atomic microscopy via double electromagnetically induced transparency
Abdul Wahab. Chin. Phys. B, 2021, 30(9): 094202.
No Suggested Reading articles found!