ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Nonvolatile holographic storage in triply doped LiNbO3: Hf, Fe, Mn crystals |
Li Xiao-Chun (李晓春), Qu Deng-Xue (屈登学), Zhao Xue-Jiao (赵雪娇), Meng Xue-Juan (孟雪娟), Zhang Ling-Ling (张玲玲 ) |
Institute of Optoelectronic Engineering, Department of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China |
|
|
Abstract LiNbO3:Fe, Mn crystal has been suggested to be used for solving the problem of information volatility during the read-out process with all-optical facilities, but the minute order response time is far from the requirements for the real-time information processing. We present the nonvolatile holographic storage properties of LiNbO3:Hf, Fe, Mn. The response time is shortened to 5.0 s, and the sensitivity S' is enhanced to 0.22 cm/J in this triply doped crystal. The experimental results show that the HfO2 doping threshold is 5.0 mol.%. Thus it seems that we have found a useful tetravalent dopant for LiNbO3:Fe, Mn that can obviously improve the nonvoaltile holographic recording sensitivity.
|
Received: 25 June 2012
Revised: 26 July 2012
Accepted manuscript online:
|
PACS:
|
42.40.-i
|
(Holography)
|
|
85.50.Gk
|
(Non-volatile ferroelectric memories)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
42.70.Ln
|
(Holographic recording materials; optical storage media)
|
|
Fund: Project supported by the National Advanced Materials Committee of China (Grant No. 2007AA03Z459) and Shanxi Provincial Technology Project for Higher Education, China (Grant No. 20091105). |
Corresponding Authors:
Li Xiao-Chun
E-mail: lixiaochun@tyut.edu.cn
|
Cite this article:
Li Xiao-Chun (李晓春), Qu Deng-Xue (屈登学), Zhao Xue-Jiao (赵雪娇), Meng Xue-Juan (孟雪娟), Zhang Ling-Ling (张玲玲 ) Nonvolatile holographic storage in triply doped LiNbO3: Hf, Fe, Mn crystals 2013 Chin. Phys. B 22 024203
|
[1] |
Ashkin A, Boyd G D, Dziedzic J M, Smith R G, Ballmann A A, Levinstein J J and Nassau K 1996 Appl. Phys. Lett. 9 72
|
[2] |
Furukawa Y, Kitamura K, Ji Y, Montemezzani G, Zgonik M, Medrano C and Günter P 1997 Opt. Lett. 22 501
|
[3] |
Zhang T, Wang B, Fang S Q and Ma D C 2005 J. Phys. D: Appl. Phys. 38 2013
|
[4] |
Liu H D, Xie X, Kong Y F, Yan W B, Li X C, Shi L H, Xu J J and Zhang G Y 2006 Opt. Mater. 28 212
|
[5] |
Li X C, Kong Y F, Wang L Z and Liu H D 2008 Chin. Phys. B 17 1014
|
[6] |
Zhang G Y, Xu J J, Liu S M, Sun Q, Zhang G Q, Fang Q Y and Ma C L 1995 Proc. SPIE 2529 14
|
[7] |
Volk T R, Razumovski N V, Mamaev A V and Rubinina N M 1996 J. Opt. Soc. Am. B 13 1457
|
[8] |
Guo Y B, Liao Y, Cao L C, Liu G D, He Q S and Jin G F 2004 Opt. Express 12 5556
|
[9] |
Zheng W, Liu B, Bi J C and Xu Y H 2005 Opt. Commun. 246 297
|
[10] |
Buse K, Adibi A and Psaltis D 1998 Nature 393 665
|
[11] |
Kokanyan E P, Razzari L, Cristiani I, Degiorgio V and Gruber J B 2004 Appl. Phys. Lett. 84 1880
|
[12] |
Kong Y F, Liu S G, Zhao Y J, Liu H D, Chen S L and Xu J J 2007 Appl. Phys. Lett. 91 081908
|
[13] |
Li S Q, Liu S G, Kong Y F, Xu J J and Zhang G Y 2006 Appl. Phys. Lett. 89 101126
|
[14] |
Yan W B, Shi L H, Chen H J, Shen X N and Kong Y F 2010 Opt. Express 18 11949
|
[15] |
Kong Y F, Wu S Q, Liu S G, Chen S L and Xu J J 2008 Appl. Phys. Lett. 92 251107
|
[16] |
Kong Y F, Liu F C, Tian T, Liu S G, Chen S L, Rupp R and Xu J J 2009 Opt. Lett. 34 3896
|
[17] |
Liu F C, Kong Y F, Ge X Y, Liu H D, Liu S G, Chen S L, Rupp R and Xu J J 2010 Opt. Express 18 6333
|
[18] |
Liu Y W, Liu L R and Zhou C H 2000 Opt. Lett. 25 551
|
[19] |
Adibi A, Buse K and Psaltis D 1999 Appl. Phys. Lett. 74 3767
|
[20] |
Yan W B, Shen X N, Shi L H, Jia F F, Qiao H B, Chen H J, Chen G F, Lu Y J, Zhang S F and Lin A D 2012 Appl. Phys. A 108 615
|
[21] |
Li X C, Kong Y F, Liu H D, Sun L, Xu J J, Chen S L, Zhang L, Huang Z H, Liu S G and Zhang G Y 2007 Solid State Commun. 141 113
|
[22] |
Kovács L, Szaller Z, Cravero I and Zaldo C 1990 J. Phys. Chem. Solids 51 417
|
[23] |
Liu D A, Liu L R, Liu Y W and Zhou C H 2000 Appl. Phys. Lett. 77 2964
|
[24] |
Adibi A, Buse K and Psaltis D 2000 Opt. Lett. 15 539
|
[25] |
Momtahan O, Cadena G H and Adibi A 2005 Opt. Lett. 30 2709
|
[26] |
Reyher H J, Schulz R and Thiemann O 1994 Phys. Rev. B 50 3609
|
[27] |
Schirmerm O, Thiemann O and Wöehlecke M 1991 J. Phys. Chem. Solids 52 185
|
[28] |
Hesselink L, Orlov S, Liu A, Akella A, Lande D and Neurgaonkar R 1998 Science 282 1089
|
[29] |
Li X C, Kong Y F, Wang Y C, Wang L Z, Liu F C, Liu H D, An Y N, Chen S L and Xu J J 2007 Appl. Opt. 46 7620
|
[30] |
Shi L H 2011 The Studies on the Optical Properties of Hf-doped LN (Ph. D. Dissertation) (Tianjin: Nankai University) (in Chiense)
|
[31] |
Momtahan O and Adibi A 2003 J. Opt. Soc. Am. B 20 44
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|