Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 020307    DOI: 10.1088/1674-1056/22/2/020307
GENERAL Prev   Next  

Optimal entanglement concentration for three-photon W states with parity check measurement

Zhou Lan (周澜)a b, Sheng Yu-Bo (盛宇波)b c, Zhao Sheng-Mei (赵生妹)b c
a College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, Nanjing 210003, China;
c National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We present an efficient entanglement concentration protocol (ECP) for the less-entangled W state with some same conventional polarized single photons. In the protocol, two of the parties say Alice and Charlie should perform the parity check measurements and they can ultimately obtain the maximally entangled W state with a certain success probability. Otherwise, they can obtain another less-entangled W state, which can be reconcentrated into the maximally entangled W state. By iterating this ECP, a high success probability can be achieved. This ECP may be an optimal one and it is useful in current quantum information processing.
Keywords:  quantum communication      entanglement      entanglement concentration  
Received:  09 August 2012      Revised:  24 September 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104159 and 61271238); the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY211008); the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, the Open Research Fund Program of National Laboratory of Solid State Microstructures, Nanjing University, (Grant Nos. M25020 and M25022); the University Natural Science Research Foundation of Jiangsu Province (Grant No. 11KJA510002); the Open Research Fund of the Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education, China, and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Sheng Yu-Bo     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Zhou Lan (周澜), Sheng Yu-Bo (盛宇波), Zhao Sheng-Mei (赵生妹) Optimal entanglement concentration for three-photon W states with parity check measurement 2013 Chin. Phys. B 22 020307

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
[5] Hillery M, Bu?zek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[6] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[7] Xiao L, Long G L, Deng F G and Pan J W 2004 Phys. Rev. A 69 052307
[8] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[9] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[10] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
[11] Gu B, Huang Y G, Fang X and Zhang C Y 2011 Chin. Phys. B 20 100309
[12] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[13] Li X H, Duan X J, Sheng Y B, Zhou H Y and Deng F G 2009 Chin. Phys. B 18 3710
[14] Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
[15] Zhang X L, Zhang Y X and Wei H 2009 Chin. Phys. B 18 435
[16] Liu W J, Chen H W, Ma T H, Li Z Q, Liu Z H and Hu W B 2009 Chin. Phys. B 18 4105
[17] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
[18] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[19] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[20] Lance A M, Symul T, Bowen W P, Sanders B C and Lam P K 2004 Phys. Rev. Lett. 92 177903
[21] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2005 Phys. Rev. A 72 044301
[22] Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Eur. Phys. J. D 39 459
[23] Deng F G, Long G L and Chen P 2006 Chin. Phys. 15 2228
[24] Li X H, Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2007 Chin. Phys. 16 2149
[25] Deng F G, Liu X S, Ma Y J, Xiao L and Long G L 2002 Chin. Phys. Lett. 19 893
[26] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[27] Pan J W, Simon C and Zellinger A 2001 Nature 410 1067
[28] Aschauer H and Briegel H J 2002 Eur. Phys. J. D 18 171
[29] Bennett C H, Bernstein H J, Popescu S and Schumacher B 1996 Phys. Rev. A 53 2046
[30] Bose S, Vedral V and Knight P L 1999 Phys. Rev. A 60 194
[31] Shi B S, Jiang Y K and Guo G C 2000 Phys. Rev. A 62 054301
[32] Zhao Z, Pan J W and Zhan M S 2001 Phys. Rev. A 64 014301
[33] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[34] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 062325
[35] Sheng Y B, Zhou L, Zhao S M and Zheng B Y 2012 Phys. Rev. A 85 012307
[36] Sheng Y B, Deng F G and Zhou H Y 2010 Quantum Inf. Comput. 10 272
[37] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[38] Deng F G 2012 Phys. Rev. A 85 022311
[39] Cao Z L and Yang M 2003 J. Phys. B 36 4245
[40] Zhang L H, Yang M and Cao Z L 2007 Physica A: Statistical Mechanics and Its Applications 374 611
[41] Wang H F, Zhang S and Yeon K H 2010 Eur. Phys. J. D 56 271
[42] Yildiz A 2010 Phys. Rev. A 82 012317
[43] Sheng Y B, Zhou L and Zhao S M 2012 Phys. Rev. A 85 042302
[44] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[45] Barrett S D, Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302
[46] Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
[47] Sheng Y B, Deng F G, Zhao B K, Wang T J and Zhou H Y 2009 Eur. Phys. J. D 55 235
[48] He B, Bergou J A and Ren Y H 2007 Phys. Rev. A 76 032301
[49] He B, Lin Q and Simon C 2011 Phys. Rev. A 83 053826
[50] He B and Bergou J A 2008 Phys. Rev. A 78 062328
[51] Xiong W and Ye L 2011 Eur. Phys. J. D 62 265
[52] Lin Q and Li J 2009 Phys. Rev. A 79 022301
[53] Lin Q and He B 2009 Phys. Rev. A 80 042310
[54] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[55] Coffman V, Kundu J and Wootters W K 2000 Phys. Rev. A 61 052306
[56] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[57] Kok P, Munro W J, Nemoto K, Ralph T C, Dowing J P and Milburn G J 2007 Rev. Mod. Phys. 79 135
[58] Gea-Banacloche J 2010 Phys. Rev. A 81 043823
[59] Shapiro J H 2006 Phys. Rev. A 73 062305
[60] Shapiro J H and Razavi M 2007 New J. Phys. 9 16
[61] Hofmann H F, Kojima K, Takeuchi S and Sasaki K 2003 J. Opt. B 5 218
[62] Feizpour A, Xing X and Steinberg A M 2011 Phys. Rev. Lett. 107 133603
[63] Zhu C and Huang G 2011 Opt. Express 19 23782
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[12] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[13] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!