Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 020308    DOI: 10.1088/1674-1056/22/2/020308
GENERAL Prev   Next  

Entanglement and quantum phase transition in the Heisenberg-Ising model

Tan Xiao-Dong (谭小东), Jin Bai-Qi (金柏琪), Gao Wei (高微)
School of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  We use the quantum renormalization-group (QRG) method to study the entanglement and quantum phase transition (QPT) in the one-dimensional spin-1/2 Heisenberg-Ising model [Lieb E, Schultz T and Mattis D 1961 Ann. Phys. (N.Y.) 16 407]. We find the quantum phase boundary of this model by investigating the evolution of concurrence in terms of QRG iterations. We also investigate the scaling behavior of system close to the quantum critical point, which shows that the minimum value of the first derivative of concurrence and the position of the minimum scale with an exponent of the system size. And the first derivative of concurrence between two blocks diverges at the quantum critical point, which is directly associated with the divergence of the correlation length.
Keywords:  quantum renormalization-group      quantum phase transition      Heisenberg-Ising model  
Received:  24 May 2012      Revised:  18 July 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  73.43.Nq (Quantum phase transitions)  
  75.10.Pq (Spin chain models)  
Corresponding Authors:  Jin Bai-Qi     E-mail:  jinbq@wzu.edu.cn

Cite this article: 

Tan Xiao-Dong (谭小东), Jin Bai-Qi (金柏琪), Gao Wei (高微) Entanglement and quantum phase transition in the Heisenberg-Ising model 2013 Chin. Phys. B 22 020308

[1] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[2] Wu L A, Sarandy M S and Lidar D A 2004 Phys. Rev. Lett. 93 250404
[3] de Oliveira T R, Rigolin G, de Oliveira M C and Miranda E 2006 Phys. Rev. Lett. 97 170401
[4] Werlang T, Trippe C, Ribeiro G A P and Gustavo R 2010 Phys. Rev. Lett. 105 095702
[5] Osterloh A, Luigi A, Falci G and Rosario F 2002 Nature 416 608
[6] Osborne T J and Nielsen M A 2002 Phys. Rev. A 66 032110
[7] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[8] Ali Y and Erhan A 2012 Chin. Phys. B 21 020511
[9] Yang M F 2005 Phys. Rev. A 71 030302
[10] Wilson K G 1975 Rev. Mod. Phys. 47 773
[11] Chen S R, Xia Y J and Man Z X 2010 Chin. Phys. B 19 050304
[12] Gu S J, Tian G S and Lin H Q 2005 Phys. Rev. A 71 052322
[13] Langari A 2004 Phys. Rev. B 69 100402
[14] Du L, Hou J M, Ding J Y, Zhang W X, Tian Z and Chen T T 2011 Chin. Phys. B 20 020306
[15] Wang L C, Yan J Y and Yi X X 2010 Chin. Phys. B 19 040512
[16] White S R and Noack R M 1992 Phys. Rev. Lett. 68 3487
[17] Ma S K 1976 Phys. Rev. Lett. 37 461
[18] Kargarian M, Jafari R and Langari A 2007 Phys. Rev. A 76 060304
[19] Kargarian M, Jafari R and Langari A 2008 Phys. Rev. A 77 032346
[20] Kargarian M, Jafari R and Langari A 2009 Phys. Rev. A 79 042319
[21] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 83 062309
[22] Ma F W, Liu S X and Kong X M 2011 Phys. Rev. A 84 042302
[23] Jafari R 2012 arXiv: 1206.2047 [cond mat]
[24] Lieb E, Schultz T and Mattis D 1961 Ann. Phys. (N.Y). 16 407
[25] Yao H, Li J and Gong C D 2002 Solid State Commun. 121 687
[26] Strecka J, Galisova L and Derzhko O 2011 arXiv: 1102.0847 [cond mat]
[27] Langari A 1998 Phys. Rev. B 58 14467
[28] Martin-Delgado M A and Sierra G 1996 Int. J. Mod. Phys. A 11 3145
[29] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[2] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[3] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[4] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[5] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[6] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[7] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[8] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[9] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[10] Classical-field description of Bose-Einstein condensation of parallel light in a nonlinear optical cavity
Hui-Fang Wang(王慧芳), Jin-Jun Zhang(张进军), and Jian-Jun Zhang(张建军). Chin. Phys. B, 2021, 30(11): 110301.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[13] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
[14] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[15] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
No Suggested Reading articles found!