Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010306    DOI: 10.1088/1674-1056/22/1/010306
GENERAL Prev   Next  

Creation of quantum correlations via the initial classical-mixed states

Han Wei (韩伟), Zhang Ying-Jie (张英杰), Xia Yun-Jie (夏云杰)
Key Laboratory of Laser Polarization and Information Technology of Shandong Province, Department of Physics, Qufu Normal University, Qufu 273165, China
Abstract  Using the pseudomode method, we theoretically analyze the creation of quantum correlations between two two-level dipole-dipole interacting atoms coupled with a common structured reservoir with different coupling strengths. Considering certain classes of initial separable-mixed states, we demonstrate that the sudden birth of atomic entanglement as well as the generation of stationary quantum correlations occur. Our results also suggest a possible way to control the occurrence time of entanglement sudden birth and the stationary value of quantum correlations by modifying the initial conditions of states, the dipole-dipole interaction, and the relative coupling strength. These results are helpful for the experimental engineering of entanglement and quantum correlations.
Keywords:  quantum correlation      quantum entanglement      quantum discord      pseudomode method  
Received:  14 June 2012      Revised:  06 July 2012      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.-p (Quantum optics)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and 10947006), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20093705110001), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ024), and the Research Funds from Qufu Normal University, China (Grant Nos. XJ201013, XJ201219, and BSQD20110132).
Corresponding Authors:  Xia Yun-Jie     E-mail:  yjxia@mail.qfnu.edu.cn

Cite this article: 

Han Wei (韩伟), Zhang Ying-Jie (张英杰), Xia Yun-Jie (夏云杰) Creation of quantum correlations via the initial classical-mixed states 2013 Chin. Phys. B 22 010306

[1] Bennett C H and Wiesner J S 1992 Phys. Rev. Lett. 69 2881
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[4] Datta A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[5] Cui J and Fan H 2010 J. Phys. A: Math. Theor. 43 045305
[6] Yu T and Eberly J H 2009 Science. 323 598
[7] Bellomo B, Franco R L, Maniscalco S and Compagno G 2008 Phys. Rev. A 78 060302
[8] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[9] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[10] Mazzola L, Piilo J and Maniscalco S 2010 arXiv: quant-ph/1006.1805
[11] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[12] Maziero J, Werlang T, Fanchini F F, Céeleri L C and Serra R M 2010 Phys. Rev. A 81 022116
[13] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[14] Zhang Y J, Zou X B, Xia Y J and Guo G C 2011 J. Phys. B 44 035503
[15] Zhang Y J, Zou X B, Xia Y J and Guo G C 2010 Phys. Rev. A 82 022108
[16] Han M, Zhang Y J and Xia Y J 2011 Int. J. Quantum Inf. 9 1413
[17] Hu X Y, Gu Y, Gong Q H and Guo G C 2011 Phys. Rev. A 84 022113
[18] Jin W and Chen Q H 2012 Chin. Phys. B 21 040302
[19] Qin Y and Xu J B 2012 Chin. Phys. B 21 030305
[20] Wang L C, Shen J and Yi X X 2011 Chin. Phys. B 20 050306
[21] Zhou T, Cui J X and Long G L 2011 Phys. Rev. A 84 062105
[22] Qian Y, Zhang Y Q and Xu J B 2012 Chin. Sci. Bull. 57 1637
[23] Wu R B, Zhang J, Li C W, Long G L and Tarn T J 2012 Chin. Sci. Bull. 57 2194
[24] Yuan J B, Kuang L M and Liao J Q 2010 J. Phys. B 43 165503
[25] Braun D 2002 Phys. Rev. Lett. 89 277901
[26] Maniscalco S, Francica F, Zaffino R L, Lo Gullo N and Plastina F 2008 Phys. Rev. Lett. 100 090503
[27] Mazzola L, Maniscalco S, Piilo J, Suominen K A and Garraway B M 2009 Phys. Rev. A 80 012104
[28] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[29] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[30] Li Y, Zhou A J and Guo H 2009 Phys. Rev. A 79 012309
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[7] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[8] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[9] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[10] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[11] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[12] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[13] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[14] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[15] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
No Suggested Reading articles found!