Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 010305    DOI: 10.1088/1674-1056/22/1/010305
GENERAL Prev   Next  

New protocols for non-orthogonal quantum key distribution

Zhou Yuan-Yuan (周媛媛), Zhou Xue-Jun (周学军), Tian Pei-Gen (田培根), Wang Ying-Jian (王瑛剑)
School of Electronic Engineering, Naval University of Engineering, Wuhan 430033, China
Abstract  Combining passive decoy-state idea with active decoy-state idea, a non-orthogonal (SARG04) decoy-state protocol with one vacuum and two weak decoy states is introduced based on a heralded pair coherent state photon source for quantum key distribution. Two special cases of this protocol are deduced, i.e., one-vacuum-and-one-weak-decoy-state protocol and one-weak-decoy-state protocol. In these protocols, the sender prepares decoy states actively, which avoids the crude estimation of parameters in SARG04 passive decoy-state method. With passive decoy-state idea, the detection events on Bob's side that are non-triggered on Alice's side are not discarded, but used to estimate the fractions of single-photon and two-photon pulses, which offsets the limitation of the detector's low efficiency and overcomes the shortcoming that the performance of active decoy-state protocol severely depends on detector's efficiency of sender. The simulation results show that the combination of active and passive decoy-state idea increases the key generation rate. With one-vacuum-and-two-weak-decoy-state protocol, one can achieve a key generation rate that is close to the theoretical limit of an infinite decoy-state protocol. The performance of the other two protocols is a little less than with the former, but the implementation is easier. Under the same condition of implementation, higher key rates can be obtained with our protocols than with existing methods.
Keywords:  quantum key distribution      non-orthogonal encoding protocol      active decoy state      passive decoy state  
Received:  01 June 2012      Revised:  09 July 2012      Accepted manuscript online: 
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2011AA7014061) and the Science Foundation of Naval University of Engineering, China (Grant No. HGDQNJJ11022).
Corresponding Authors:  Zhou Yuan-Yuan     E-mail:  zyy_hjgc@yahoo.com.cn

Cite this article: 

Zhou Yuan-Yuan (周媛媛), Zhou Xue-Jun (周学军), Tian Pei-Gen (田培根), Wang Ying-Jian (王瑛剑) New protocols for non-orthogonal quantum key distribution 2013 Chin. Phys. B 22 010305

[1] Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Bangalore, India) p. 175
[2] Hwang W Y 2003 Phys. Rev. Lett. 91 057901
[3] Wang X B 2005 Phys. Rev. Lett. 94 230503
[4] Wang X B 2005 Phys. Rev. A 72 012322
[5] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[6] Smith G, Renes J M and Smolin J A 2008 Phys. Rev. Lett. 100 170502
[7] Yin Z Q, Han Z F, Sun F W and Guo G C 2007 Phys. Rev. A 76 014304
[8] Usenko V C and Paris M G A 2007 Phys. Rev. A 75 043812
[9] Zhang L B, Zhong Y Y and Kang L 2008 Chin. Sci. Bull 53 2668
[10] Christoph S, Hugues D R, Mikael A, Nicolas S, Hugo Z and Nicolas G 2007 Phys. Rev. Lett. 98 190503
[11] Ma X F, Qi B, ZhaoY and Lo H K 2005 Phys. Rew. A 72 012326
[12] Li J B and Fang X M 2006 Chin. Phys. Lett. 23 775
[13] Wang Q, Wang X B and Guo G C 2007 Phys. Rev. A 75 012312
[14] Yin Z Q, Han Z F, Sun F W and Guo G C 2007 Phys. Rev. A 76 014304
[15] Hu H P, Wang J D, Huang Y X, Liu S H and Lu W 2010 Acta Phys. Sin. 59 287 (in Chinese)
[16] Mi J L, Wang F Q, Lin Q Q, Liang R S and Liu S H 2008 Acta Phys. Sin. 57 678 (in Chinese)
[17] Zhang S L, Zou X B, Li K, Jin C H and Guo G C 2007 Phys. Rev. A 76 044304
[18] Mi J L, Wang F Q, Lin Q Q and Liang R S 2008 Chin. Phys. B 17 1178
[19] Zhang S L, Zou X B, Li C F, Jin C H and Guo G C 2009 Chin. Sci. Bull 54 1863
[20] Scarani V, Acin A, Ribordy G and Gisi N 2004 Phys. Rev. Lett. 92 057901
[21] Mauerer W and Silberhorn C 2007 Phys. Rev. A 75 050305
[22] Adachi Y, Yamamoto T, Koashi M and Imoto N 2007 Phys. Rev. Lett. 99 180503
[23] Quan D X, Pei C X, Zhu C H and Liu D 2008 Acta Phys. Sin. 57 5600 (in Chinese)
[24] Curty M, Moroder T, Ma X F and Lütkenhaus N 2009 Opt. Lett. 34 3238
[25] Curty M, Ma X F, Qi B and Moroder T 2010 Phys. Rev. A 81 022310
[26] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[27] Zhou Y Y and Zhou X J 2011 Acta Phys. Sin. 60 100301 (in Chinese)
[28] Ma X F and Lo H K 2008 New J. Phys. 10 073018
[29] Fung C H F, Tamaki K and Lo H K 2006 Phys. Rev. A 73 012337
[30] Gobby C, Yuan Z L and Shields A J 2004 Phys. Rev. Lett. 84 3762
[31] Agarwal G S 1986 Phys. Rev. Lett. 57 827
[32] Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quantum Inform. Comput. 4 325
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Three-party reference frame independent quantum key distribution protocol
Comfort Sekga and Mhlambululi Mafu. Chin. Phys. B, 2021, 30(12): 120301.
[15] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
No Suggested Reading articles found!