Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 094101    DOI: 10.1088/1674-1056/21/9/094101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A novel structure for broadband left-handed metamaterial

Xiong Han (熊汉), Hong Jing-Song (洪劲松), Jin Da-Lin (金大琳), Zhang Zhi-Min (章志敏)
Institute of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A low absorptivity broadband negative refractive index metamaterial with multi-gap split-ring and metallic cross (MSMC) structure is proposed and investigated numerically and experimentally in the microwave frequency range. From the numerical and experimental results, the effective media parameters were retrieved, which clearly show that there exists a very wide frequency band where the permittivity and permeability are negative. The influence of the structure parameters on the magnetic response and the cut-off frequency of the negative permittivity are studied in detail. This metamaterial would have potential application in designing broadband microwave devices.
Keywords:  metamaterial      negative refractive index (NRI)      broadband  
Received:  08 March 2012      Revised:  02 April 2012      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Bs (Wave propagation, transmission and absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61172115 and 60872029), the High-Tech Research and Development Program of China (Grant No. 2008AA01Z206), the Aeronautics Foundation of China (Grant No. 20100180003), and the Fundamental Research Funds for the Central Universities of China (Grant No. ZYGX 2009J037).
Corresponding Authors:  Xiong Han     E-mail:  xiong1226han@126.com

Cite this article: 

Xiong Han (熊汉), Hong Jing-Song (洪劲松), Jin Da-Lin (金大琳), Zhang Zhi-Min (章志敏) A novel structure for broadband left-handed metamaterial 2012 Chin. Phys. B 21 094101

[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Leonhardt U 2006 Science 312 1777
[3] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[4] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[5] Cai W S, Chettiar U K, Kildishev A V and Shalaev V M 2007 Nature Photonics 1 224
[6] Kante B, de Lustrac A, Lourtioz J M and Burokur S N 2008 Opt. Express 16 9191
[7] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[8] Smith D R, Padilla W J, Vier D, Nemat-Nasser S C and Schultz S 2000 Phys. Rev. Lett. 84 4184
[9] Huangfu J T, Ran L X, Chen H S, Zhang X M, Chen K S, Grzegorczyk T M and Kong J A 2004 Appl. Phys. Lett. 84 1537
[10] Chen H S, Ran L X, Huangfu J T, Zhang X M and Chen K S 2004 Phys. Rev. E 70 57605
[11] Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry J B and Soukoulis C M 2005 Phys. Rev. Lett. 95 223902
[12] Zhou J F, Zhang L, Tuttle G, Koschny T and Soukoulis C M 2006 Phys. Rev. B 73 041101
[13] Amiri N, Forooraghi K and Atlasbaf Z 2011 IEEE Antennas Wireless Propag. Lett. 10 524
[14] Kafesaki M, Tsiapa I, Katsarakis N, Koschny T, Soukoulis C M and Economou E N 2007 Phys. Rev. B 75 235114
[15] Zhu W R, Zhao X P and Guo J Q 2008 Appl. Phys. Lett. 92 241116
[16] Han N R, Chen Z C, Lim C S, Ng B and Hong M 2011 Opt. Express 19 6990
[17] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
[18] Wang J F, Qu S B, Yang Y M, Ma H, Wu X and Xu Z 2009 Appl. Phys. Lett. 95 014105
[19] Solymar L and Shamonina E 2009 Waves in Metamaterials (Oxford: Oxford University Press) p. 137
[20] Wang J F, Qu S B, Xu Z, Zhang J Q, Ma H, Yang Y M and Gu C 2009 Photonics Nanostruct. Fundam. Appl. 7 108
[21] Zhou J F, Koschny T and Soukoulis C M 2008 Opt. Express 16 11147
[22] Zhou J, Koschny T, Kafesaki M, Economou E N, Pendry J B and Soukoulis C M 2005 Phys. Rev. Lett. 95 223902
[1] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[2] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[3] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[4] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[5] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[6] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[7] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[8] Dynamically controlled asymmetric transmission of linearly polarized waves in VO2-integrated Dirac semimetal metamaterials
Man Xu(许曼), Xiaona Yin(殷晓娜), Jingjing Huang(黄晶晶), Meng Liu(刘蒙), Huiyun Zhang(张会云), and Yuping Zhang(张玉萍). Chin. Phys. B, 2022, 31(6): 067802.
[9] Broadband low-frequency acoustic absorber based on metaporous composite
Jia-Hao Xu(徐家豪), Xing-Feng Zhu(朱兴凤), Di-Chao Chen(陈帝超), Qi Wei(魏琦), and Da-Jian Wu(吴大建). Chin. Phys. B, 2022, 31(6): 064301.
[10] Plasmon-induced transparency effect in hybrid terahertz metamaterials with active control and multi-dark modes
Yuting Zhang(张玉婷), Songyi Liu(刘嵩义), Wei Huang(黄巍), Erxiang Dong(董尔翔), Hongyang Li(李洪阳), Xintong Shi(石欣桐), Meng Liu(刘蒙), Wentao Zhang(张文涛), Shan Yin(银珊), and Zhongyue Luo(罗中岳). Chin. Phys. B, 2022, 31(6): 068702.
[11] Simulated and experimental studies of a multi-band symmetric metamaterial absorber with polarization independence for radar applications
Hema O. Ali, Asaad M. Al-Hindawi, Yadgar I. Abdulkarim, Ekasit Nugoolcharoenlap, Tossapol Tippo,Fatih Özkan Alkurt, Olcay Altıntaş, and Muharrem Karaaslan. Chin. Phys. B, 2022, 31(5): 058401.
[12] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[13] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[14] A high-quality-factor ultra-narrowband perfect metamaterial absorber based on monolayer molybdenum disulfide
Liying Jiang(蒋黎英), Yingting Yi(易颖婷), Yijun Tang(唐轶峻), Zhiyou Li(李治友),Zao Yi(易早), Li Liu(刘莉), Xifang Chen(陈喜芳), Ronghua Jian(简荣华),Pinghui Wu(吴平辉), and Peiguang Yan(闫培光). Chin. Phys. B, 2022, 31(3): 038101.
[15] A flexible ultra-broadband metamaterial absorber working on whole K-bands with polarization-insensitive and wide-angle stability
Tao Wang(汪涛), He-He He(何贺贺), Meng-Di Ding(丁梦迪), Jian-Bo Mao(毛剑波), Ren Sun(孙韧), and Lei Sheng(盛磊). Chin. Phys. B, 2022, 31(3): 037804.
No Suggested Reading articles found!