Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 093702    DOI: 10.1088/1674-1056/21/9/093702
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Controllable optical bistability of Bose–Einstein condensate in an optical cavity with Kerr medium

Zheng Qiang (郑强)a b, Li Sheng-Chang (栗生长)b, Zhang Xiao-Ping (张小平)c, You Tai-Jie (游泰杰)a, Fu Li-Bin (傅立斌)b
a School of Mathematics and Computer Science, Guizhou Normal University, Guiyang 550001, China;
b Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
c Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Abstract  We study the optical bistability for a Bose-Einstein condensate of atoms in a driven optical cavity with Kerr medium. We find that both the threshold point of optical bistability transition and the width of optical bistability hysteresis can be controlled by appropriately adjusting the Kerr interaction between the photons. In particular, we show that the optical bistability will disappear when the Kerr interaction exceeds a critical value.
Keywords:  Bose-Einstein condensate      optical bistability      Kerr interaction  
Received:  28 November 2011      Revised:  05 December 2011      Accepted manuscript online: 
PACS:  37.30.+i (Atoms, molecules, andions incavities)  
  42.65.Pc (Optical bistability, multistability, and switching, including local field effects)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  37.10.Jk (Atoms in optical lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11065005 and 11105079) and the Governor's Foundation for Science and Education Elites of Guizhou Province, China.
Corresponding Authors:  Fu Li-Bin     E-mail:  lbfu@iapcm.ac.cn

Cite this article: 

Zheng Qiang (郑强), Li Sheng-Chang (栗生长), Zhang Xiao-Ping (张小平), You Tai-Jie (游泰杰), Fu Li-Bin (傅立斌) Controllable optical bistability of Bose–Einstein condensate in an optical cavity with Kerr medium 2012 Chin. Phys. B 21 093702

[1] Domokos P and Ritsch H 2002 Phys. Rev. Lett. 89 253003
[2] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301
[3] Larson J, Damski B, Morigi G and Lewenstein M 2008 Phys. Rev. Lett. 100 050401
[4] Li S C, Fu L B and Liu J 2011 Phys. Rev. A 84 053610
[5] Slama S, Bux S, Krenz G, Zimmermann C and Courteille P W 2007 Phys. Rev. Lett. 98 053603
[6] Zhang J M, Liu W M and Zhou D L 2008 Phys. Rev. A 77 033620
[7] Wang B W, Tan L, Lu C H and Tan W T 2011 Chin. Phys. B 19 117402
[8] Gupta S, Moore K L, Murch K W and Stamper-Kurn D M 2007 Phys. Rev. Lett. 99 213601
[9] Kippenberg T J and Vahala K J 2009 Science 321 1172
[10] Law C K 1995 Phys. Rev. A 51 2537
[11] Genes C, Mari A, Tombesi P and Vitali D 2008 Phys. Rev. A 78 032316
[12] Brennecke F, Ritter S, Donner T and Esslinger T 2008 Science 322 235
[13] Gibbs H M 1985 Controlling Light with Light (Orlando: Academic)
[14] Joshi A and Xiao M 2003 Phys. Rev. Lett. 91 143904
[15] Chang H, Wu H, Xie C D and Wang H 2004 Phys. Rev. Lett. 93 213901
[16] Zhou L, Pu H, Ling H Y and Zhang W 2009 Phys. Rev. Lett. 103 160403
[17] Yang S, Al-Amri M, Evers J and Zubairy M S 2011 Phys. Rev. A 83 053821
[18] Imamoglu A, Schmidt H, Woods G and Deutsch M 1997 Phys. Rev. Lett. 79 1467
[19] Kumar T, Bhattacherjee A B and ManMohan 2010 Phys. Rev. A 81 013835
[20] Zhang K, Chen W, Bhattacharya M and Meystre P 2010 Phys. Rev. A 81 013802
[21] Zhang J M, Cui F C, Zhou D L and Liu W M 2009 Phys. Rev. A 79 033401
[22] Wu B and Niu Q 2000 Phys. Rev. A 61 023402(R)
[23] Pu H, Maenner P, Zhang W and Ling H Y 2007 Phys. Rev. Lett. 98 050406
[24] Wang G F, Fu L B, Zhao H and Liu J 2005 Acta Phys. Sin. 54 5003 (in Chinese)
[1] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[2] Superfluid to Mott-insulator transition in a one-dimensional optical lattice
Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
[3] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[4] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[5] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[6] Spin current in a spinor Bose-Einstein condensate induced by a gradient magnetic field
Li Tian(田丽), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Wenliang Liu(刘文良), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(11): 110302.
[7] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[8] Dynamical stability of dipolar condensate in a parametrically modulated one-dimensional optical lattice
Ji-Li Ma(马吉利), Xiao-Xun Li(李晓旬), Rui-Jin Cheng(程瑞锦), Ai-Xia Zhang(张爱霞), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(6): 060307.
[9] Dynamics of bright soliton in a spin-orbit coupled spin-1 Bose-Einstein condensate
Hui Guo(郭慧), Xu Qiu(邱旭), Yan Ma(马燕), Hai-Feng Jiang(姜海峰), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2021, 30(6): 060310.
[10] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[11] Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛). Chin. Phys. B, 2021, 30(12): 120303.
[12] Merging and splitting dynamics between two bright solitons in dipolar Bose-Einstein condensates
Xin Li(李欣), Peng Gao(高鹏), Zhan-Ying Yang(杨战营), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(12): 120501.
[13] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[14] Nonlinear dynamical stability of gap solitons in Bose-Einstein condensate loaded in a deformed honeycomb optical lattice
Hongjuan Meng(蒙红娟), Yushan Zhou(周玉珊), Xueping Ren(任雪平), Xiaohuan Wan(万晓欢), Juan Zhang(张娟), Jing Wang(王静), Xiaobei Fan(樊小贝), Wenyuan Wang(王文元), and Yuren Shi(石玉仁). Chin. Phys. B, 2021, 30(12): 126701.
[15] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
No Suggested Reading articles found!