Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098103    DOI: 10.1088/1674-1056/21/9/098103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Carbon nanotube film synthesized from ethanol and its oxidation behavior in air

Ren Yan (任彦)a b, Ma Wen-Jun (马文君)a b, Zeng Qing-Sheng (曾庆圣)a, Li Jin-Zhu (李金柱)a b, Dong Hai-Bo (董海博)a b, Zhou Wei-Ya (周维亚)a
a Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Graduate University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100039, China
Abstract  In this paper, we propose an efficient way to synthesize carbon nanotube films using ferrocene and ethanol. The as-grown film is free-standing, semi-transparent, and of macro scale size. The tubes in the film are mostly single- or double-walled. The oxidation behavior of the film is studied via Raman spectroscopy, and the result indicates that the inner wall of the double-walled tube is effectively protected from oxidation by the outer wall.
Keywords:  carbon nanotube      film      Raman spectroscopy      oxidation  
Received:  06 May 2012      Accepted manuscript online: 
PACS:  81.07.De (Nanotubes)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  78.67.Ch (Nanotubes)  
  61.48.De (Structure of carbon nanotubes, boron nanotubes, and other related systems)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2005CB623602) and the Key Item of Knowledge Innovation Project of Chinese Academy of Sciences (Grant No. KJCX2-YW-M01).
Corresponding Authors:  Zhou Wei-Ya     E-mail:  wyzhou@aphy.iphy.ac.cn

Cite this article: 

Ren Yan (任彦), Ma Wen-Jun (马文君), Zeng Qing-Sheng (曾庆圣), Li Jin-Zhu (李金柱), Dong Hai-Bo (董海博), Zhou Wei-Ya (周维亚) Carbon nanotube film synthesized from ethanol and its oxidation behavior in air 2012 Chin. Phys. B 21 098103

[1] Iijima S 1991 Nature 354 56
[2] Saito R, Dresselhaus G and Dresselhaus M 1998 Physical Properties of Carbon Nanotubes (London: Imperial College Press) p. 5
[3] Tatsuura S 2003 Adv. Mater. 15 534
[4] Dharap P, Li Z, Nagarajaiah S and Barrera E V 2004 Sensor Review 24 271
[5] Itkis M E, Borondics F, Yu A P and Haddon R C 2006 Science 312 413
[6] Lee K 2004 Nano Lett. 4 911
[7] Snow E S, Perkins F K, Houser E J, Badescu S C and Reinecke T L 2005 Science 307 1942
[8] Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson M and Zhou C 2006 Nano Lett. 6 1880
[9] Liu L Q, Ma W J and Zhang Z 2011 Small 7 1504
[10] Song L, Liu S, Zhang G M, Liu L F, Ma W J, Liu D F, Zhao X W, Luo S D, Zhang Z X, Xiang Y J, Shen J, Zhou J J, Wang G and Zhou W Y 2006 Chin. Phys. 15 422
[11] Niu Z Q, Ma W J, Dong H B, Li J Z and Zhou W Y 2011 Chin. Phys. B 20 028101
[12] Wu Z, Chen Z, Du X, Logan J M, Sippel J, Nikolou M, Kamaras K, Reynolds J R, Tanner D B, Hebard A F and Rinzler A G 2004 Science 305 1273
[13] Jiang K L, Wang J P, Li Q Q, Liu L, Li C H and Fan S S 2011 Adv. Mater. 23 1154
[14] Ma W J, Song L, Yang R, Zhang T H, Zhao Y C, Sun L F, Ren Y, Liu D F, Liu L F, Shen J, Zhang Z X, Xiang Y J, Zhou W Y and Xie S S 2007 Nano Lett. 7 2307
[15] Zhou W Y, Ma W J, Niu Z Q, Song L and Xie S S 2011 Chinese Science Bulletin 57 205
[16] Liu Q, Ren W, Wang D W, Chen Z G, Pei S, Liu B, Li F, Cong H, Liu C and Cheng H M 2009 ACS Nano 3 707
[17] Kataura H, Kumazawa Y, Maniwa Y, Umezu I, Suzuki S, Ohtsuka Y and Achiba Y 1999 Synthetic Metals 103 2555
[18] Niyogi S, Hamon M A, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M E and Haddon R C 2002 Acc. Chem. Res. 35 1105
[19] Xu X and Kang H 2007 Chem. Mater. 19 3767
[20] Osswald S, Flahaut E and Gogotsi Y 2006 Chem. Mater. 18 1525
[21] Kurti J, Kresse G and Kuzmany H 1998 Phys. Rev. B 58 8869
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[3] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[4] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[5] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[6] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[7] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[8] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[9] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[12] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[13] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[14] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[15] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
No Suggested Reading articles found!