INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
ZnO microbowls grown on ITO glass substrate through thermal evaporation |
Zhang Zheng-Lin (张正林), Zheng Gang (郑刚), Qu Feng-Yu (曲凤玉), Wu Xiang (武祥) |
Key Laboratory of Photonic and Electronic Bandgap Materials of Ministry of Education and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China |
|
|
Abstract Novel ZnO microbowls are successfully synthesized by thermal evaporating of a mixture of ZnS powder and Zn powder. The morphologies of the as-synthesized products can be adjusted by changing the temperature and the type of substrate. The morphologies, microstructures, and photoluminescence properties are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscope, and photoluminescence spectroscopy respectively. The growth mechanism of the as-synthesized ZnO microbowls is proposed based on the experimental results. ZnO microbowls presented here can be used as building blocks to fabricate optical and optoelectronic micro/nano devices.
|
Received: 14 February 2012
Revised: 19 March 2012
Accepted manuscript online:
|
PACS:
|
81.07.St
|
(Quantum wells)
|
|
81.05.Dz
|
(II-VI semiconductors)
|
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
Fund: Project supported by the Foundation for Key Project of Ministry of Education, China (Grant No. 211046), the Open Fund of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Dong Hua University, China (Grant No. K1012), the Program for New Century Excellent Talents in Heilongjiang Provincial University, China (Grant No. 1252-NCET-018), and the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang, China (Grant No. 2011TD010). |
Corresponding Authors:
Wu Xiang
E-mail: wuxiang05@gmail.com
|
Cite this article:
Zhang Zheng-Lin (张正林), Zheng Gang (郑刚), Qu Feng-Yu (曲凤玉), Wu Xiang (武祥) ZnO microbowls grown on ITO glass substrate through thermal evaporation 2012 Chin. Phys. B 21 098104
|
[1] |
Wang X D, Song J H, Liu J and Wang Z L 2007 Science 316 102
|
[2] |
Ke J J, Liu Z J, Kang C F, Lin S J and He J H 2011 Appl. Phys. Lett. 99 192106
|
[3] |
Zhang H J, Wu X, Qu F Y and Zhao G G 2011 Cryst. Eng. Comm. 13 6114
|
[4] |
Zeng H B, Cai W P, Liu P S, Xu X X, Zhou H J, Klingshirn C and Kalt H 2008 ACS Nano 2 1661
|
[5] |
Chao Y C, Chen C Y, Lin C A, Dai Y A and He J H 2010 J. Mater. Chem. 20 8134
|
[6] |
Yang Z X, Du X, Zhong W, Yin Y X, Xu M H, Au C T and Du Y W 2011 J. Alloys Compd. 509 3403
|
[7] |
Chen H B, Wu X, Gong L H, Ye C, Qu F Y and Shen G Z 2010 Nanoscale Res. Lett. 5 570
|
[8] |
Zeng H B, Duan G T, Li Y, Yang S K, Xu X X and Cai W P 2010 Adv. Funct. Mater. 20 561
|
[9] |
Chang Y M, Shieh J, Chu P Y, Lee H Y, Lin C M and Juang J Y 2011 ACS Appl. Mater. Interfaces 3 4415
|
[10] |
Wu X, Lei Y, Zheng Y F and Qu F Y 2010 Nano-Micro Letters 2 272
|
[11] |
Guo C F, Wang Y S and Liu Q 2010 J. Nanosci. Nanotechnol. 10 7167
|
[12] |
Wu X, Cai W and Qu F Y 2009 Acta Phys. Sin. 58 8044 (in Chinese)
|
[13] |
Yu L J, Qu F Y and Wu X 2011 Appl. Surf. Sci. 257 7432
|
[14] |
Yu L J, Qu F Y and Wu X 2010 J. Alloys Compd. 504 L1
|
[15] |
Cao X L, Zeng H B, Wang M, Xu X J, M Fang, S L Ji and Zhang L D 2008 J. Phys. Chem. C 112 5267
|
[16] |
Lee Y J, Ruby D S, Peters D W, McKenzie B B and Hsu J W P 2008 Nano Lett. 8 1501
|
[17] |
Lin G J, Lai K Y, Lin C A and He J H 2012 Opt. Lett. 37 61
|
[18] |
Wang X D, Graugnard E, King J S, Wang Z L and Summers C J 2004 Nano Lett. 4 2223
|
[19] |
Zhang Y, Jiang L, Li H, Fan L Z, Hu W P, Wang C R, Li Y F and Yang S H 2011 Chem. Eur. J. 17 4921
|
[20] |
Ge X P, Ge X W, Wang M Z, Liu H R, Fang B, Li Z, Shi X J, Yang C Z and Li G 2011 Macromol. Rapid Comm. 32 1615
|
[21] |
Wang Y F, Chen X L, Zhang J H, Sun Z Q, Li Y F, Zhang K and Yang B 2008 Colloids Surface A Phys. Engn. 329 184
|
[22] |
WangY F, Zhang J H, Chen X L, Li X, Sun Z Q, Zhang K, Wang D Y and Yang B 2008 J. Colliod Interface Sci. 322 327
|
[23] |
Tao Y L, Fu M, Zhao A L, He D W and Wang Y S 2010 J. Nanosci. Nanotechnol. 10 7603
|
[24] |
Guo C F, Wang Y S, Jiang P, Cao S H, Miao J J, Zhang Z W and Liu Q 2008 Nanotechnology 19 445710
|
[25] |
Damen T C, Porto S P S and Tell B 1966 Phys. Rev. 142 570
|
[26] |
Li H X, Xia M X, Dai G Z, Yu H C, Zhang Q L, Pan A L, Wang T H, Wang Y G and Zou B S 2008 J. Phys. Chem. C 112 17546
|
[27] |
Wu X, Cai W and Qu F Y 2009 Chin. Phys. B 18 1669
|
[28] |
Gong L H, Wu X, Ye C, Qu F Y and An M Z 2010 J. Alloys Compd. 501 375
|
[29] |
Yang Z X, Zhong W, Deng Y, Au C T and Du Y W 2011 Cryst. Growth Des. 11 2172
|
[30] |
Han Y T, Wu X, Shen G Z, Dierre B, Gong L H, Qu F Y, Bando Y, Sekiguchi T, Fabbri F and Folberg D 2010 J. Phys. Chem. C 114 8235
|
[31] |
Wu X, Jiang P, Cai W, Bai X D, Gao P and Xie S S 2008 Adv. Engn. Mater. 10 476 [RefAutoNo]Greene L, Law M, Goldberger J, Kim F, Johnson J, Zhang Y, Saykally R and Yang P 2003 Angew. Chem. Int. Ed. 42 3031
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|