Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098104    DOI: 10.1088/1674-1056/21/9/098104
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

ZnO microbowls grown on ITO glass substrate through thermal evaporation

Zhang Zheng-Lin (张正林), Zheng Gang (郑刚), Qu Feng-Yu (曲凤玉), Wu Xiang (武祥)
Key Laboratory of Photonic and Electronic Bandgap Materials of Ministry of Education and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
Abstract  Novel ZnO microbowls are successfully synthesized by thermal evaporating of a mixture of ZnS powder and Zn powder. The morphologies of the as-synthesized products can be adjusted by changing the temperature and the type of substrate. The morphologies, microstructures, and photoluminescence properties are investigated by X-ray diffraction, Raman spectroscopy, scanning electron microscope, and photoluminescence spectroscopy respectively. The growth mechanism of the as-synthesized ZnO microbowls is proposed based on the experimental results. ZnO microbowls presented here can be used as building blocks to fabricate optical and optoelectronic micro/nano devices.
Keywords:  microbowls      thermal evaporation      ZnO      growth mechanism  
Received:  14 February 2012      Revised:  19 March 2012      Accepted manuscript online: 
PACS:  81.07.St (Quantum wells)  
  81.05.Dz (II-VI semiconductors)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the Foundation for Key Project of Ministry of Education, China (Grant No. 211046), the Open Fund of State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Dong Hua University, China (Grant No. K1012), the Program for New Century Excellent Talents in Heilongjiang Provincial University, China (Grant No. 1252-NCET-018), and the Program for Scientific and Technological Innovation Team Construction in Universities of Heilongjiang, China (Grant No. 2011TD010).
Corresponding Authors:  Wu Xiang     E-mail:  wuxiang05@gmail.com

Cite this article: 

Zhang Zheng-Lin (张正林), Zheng Gang (郑刚), Qu Feng-Yu (曲凤玉), Wu Xiang (武祥) ZnO microbowls grown on ITO glass substrate through thermal evaporation 2012 Chin. Phys. B 21 098104

[1] Wang X D, Song J H, Liu J and Wang Z L 2007 Science 316 102
[2] Ke J J, Liu Z J, Kang C F, Lin S J and He J H 2011 Appl. Phys. Lett. 99 192106
[3] Zhang H J, Wu X, Qu F Y and Zhao G G 2011 Cryst. Eng. Comm. 13 6114
[4] Zeng H B, Cai W P, Liu P S, Xu X X, Zhou H J, Klingshirn C and Kalt H 2008 ACS Nano 2 1661
[5] Chao Y C, Chen C Y, Lin C A, Dai Y A and He J H 2010 J. Mater. Chem. 20 8134
[6] Yang Z X, Du X, Zhong W, Yin Y X, Xu M H, Au C T and Du Y W 2011 J. Alloys Compd. 509 3403
[7] Chen H B, Wu X, Gong L H, Ye C, Qu F Y and Shen G Z 2010 Nanoscale Res. Lett. 5 570
[8] Zeng H B, Duan G T, Li Y, Yang S K, Xu X X and Cai W P 2010 Adv. Funct. Mater. 20 561
[9] Chang Y M, Shieh J, Chu P Y, Lee H Y, Lin C M and Juang J Y 2011 ACS Appl. Mater. Interfaces 3 4415
[10] Wu X, Lei Y, Zheng Y F and Qu F Y 2010 Nano-Micro Letters 2 272
[11] Guo C F, Wang Y S and Liu Q 2010 J. Nanosci. Nanotechnol. 10 7167
[12] Wu X, Cai W and Qu F Y 2009 Acta Phys. Sin. 58 8044 (in Chinese)
[13] Yu L J, Qu F Y and Wu X 2011 Appl. Surf. Sci. 257 7432
[14] Yu L J, Qu F Y and Wu X 2010 J. Alloys Compd. 504 L1
[15] Cao X L, Zeng H B, Wang M, Xu X J, M Fang, S L Ji and Zhang L D 2008 J. Phys. Chem. C 112 5267
[16] Lee Y J, Ruby D S, Peters D W, McKenzie B B and Hsu J W P 2008 Nano Lett. 8 1501
[17] Lin G J, Lai K Y, Lin C A and He J H 2012 Opt. Lett. 37 61
[18] Wang X D, Graugnard E, King J S, Wang Z L and Summers C J 2004 Nano Lett. 4 2223
[19] Zhang Y, Jiang L, Li H, Fan L Z, Hu W P, Wang C R, Li Y F and Yang S H 2011 Chem. Eur. J. 17 4921
[20] Ge X P, Ge X W, Wang M Z, Liu H R, Fang B, Li Z, Shi X J, Yang C Z and Li G 2011 Macromol. Rapid Comm. 32 1615
[21] Wang Y F, Chen X L, Zhang J H, Sun Z Q, Li Y F, Zhang K and Yang B 2008 Colloids Surface A Phys. Engn. 329 184
[22] WangY F, Zhang J H, Chen X L, Li X, Sun Z Q, Zhang K, Wang D Y and Yang B 2008 J. Colliod Interface Sci. 322 327
[23] Tao Y L, Fu M, Zhao A L, He D W and Wang Y S 2010 J. Nanosci. Nanotechnol. 10 7603
[24] Guo C F, Wang Y S, Jiang P, Cao S H, Miao J J, Zhang Z W and Liu Q 2008 Nanotechnology 19 445710
[25] Damen T C, Porto S P S and Tell B 1966 Phys. Rev. 142 570
[26] Li H X, Xia M X, Dai G Z, Yu H C, Zhang Q L, Pan A L, Wang T H, Wang Y G and Zou B S 2008 J. Phys. Chem. C 112 17546
[27] Wu X, Cai W and Qu F Y 2009 Chin. Phys. B 18 1669
[28] Gong L H, Wu X, Ye C, Qu F Y and An M Z 2010 J. Alloys Compd. 501 375
[29] Yang Z X, Zhong W, Deng Y, Au C T and Du Y W 2011 Cryst. Growth Des. 11 2172
[30] Han Y T, Wu X, Shen G Z, Dierre B, Gong L H, Qu F Y, Bando Y, Sekiguchi T, Fabbri F and Folberg D 2010 J. Phys. Chem. C 114 8235
[31] Wu X, Jiang P, Cai W, Bai X D, Gao P and Xie S S 2008 Adv. Engn. Mater. 10 476 [RefAutoNo]Greene L, Law M, Goldberger J, Kim F, Johnson J, Zhang Y, Saykally R and Yang P 2003 Angew. Chem. Int. Ed. 42 3031
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[5] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[10] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[11] Synthesis of flower-like WS2 by chemical vapor deposition
Jin-Zi Ding(丁金姿), Wei Ren(任卫), Ai-Ling Feng(冯爱玲), Yao Wang(王垚), Hao-Sen Qiao(乔浩森), Yu-Xin Jia(贾煜欣), Shuang-Xiong Ma(马双雄), and Bo-Yu Zhang(张博宇). Chin. Phys. B, 2021, 30(12): 126201.
[12] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[13] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[14] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[15] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
No Suggested Reading articles found!