CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Hydrogen storage of Mg1-xMxH2 (M=Ti, V, Fe) studied using first-principles calculations |
M. Bhihia, M. Lakhala, H. Labrimb, A. Benyoussefa c d, A. El Kenza, O. Mounkachic, E. K. Hlile |
a Laboratoire de Magnétisme et de Physique des Hautes Energies, associé au CNRST (URAC 12), Département de Physique, B.P. 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco; b National Centre for Energy, Sciences and Nuclear Techniques CNESTEN, Morocco; c Institute of Nanomaterials and Nanotechnologies, MACsIR, Rabat, Morocco; d Hassan II Academy of Science and Technology, Rabat, Morocco; e Institut Néel, CNRS-UJF, 38042 Grenoble Cedex 9, France |
|
|
Abstract In this work, the hydrogen storage properties of the Mg-based hydrides, i.e., Mg1-xMxH2 (M=Ti, V, Fe, 0 ≤ x ≤ 0.1), are studied using the Korringa-Kohn-Rostoker (KKR) calculation with the coherent potential approximation (CPA) approximation. In particular, the nature and the concentrations of the alloying elements and their effects are studied. Moreover, the material's stability and hydrogen storage thermodynamic properties are discussed. In particular, we find that the stability and the temperature of desorption decrease without significantly affecting the storage capacities.
|
Received: 16 January 2012
Revised: 13 April 2012
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
Corresponding Authors:
A. El Kenz
E-mail: elkenz@fsr.ac.ma
|
Cite this article:
M. Bhihi, M. Lakhal, H. Labrim, A. Benyoussef, A. El Kenz, O. Mounkachi, E. K. Hlil Hydrogen storage of Mg1-xMxH2 (M=Ti, V, Fe) studied using first-principles calculations 2012 Chin. Phys. B 21 097501
|
[1] |
Cabo M, Garrroni S, Pellicer E, Milanese C, Girella A, Marini A, Rossinyol E, Surinach S and Dolors Baro M 2011 International Journal of Hydrogen Energy 36 5400
|
[2] |
Kurko S, Matovic L, Novakovic N, Matovic B, Jovanovic Z, Paskas Mamula B and Novakovic J 2011 International Journal of Hydrogen Energy 36 1184
|
[3] |
Liang G, Huot J, Boily S, Van Neste A and Schulz R 1999 J. Alloys Comp. 292 247
|
[4] |
Rivoirard S, de Rango P, Fruchart D, Charbonnier J and Vempaire D 2003 J. Alloys Comp. 622 356
|
[5] |
Charbonnier J, De Rango P, Fruchart D, Miraglia S, Pontonnier L, Rivoirard S, Skryabina N and Vulliet P 2004 J. Alloys Comp. 383 205
|
[6] |
Shang X, Bououdina M, Song Y and Guo Z X 2004 International Journal of Hydrogen Energy 29 73
|
[7] |
Song M Y, Bobet J L and Darriet B 2002 J. Alloys Comp. 340 256
|
[8] |
Spassov T, Rangelova V, Solsona P, BaróM D, Zander D and Köster U 2005 J. Alloys Comp. 398 139
|
[9] |
Shao H, Asano K, Enoki H and Akiba E 2009 J. Alloys Comp. 477 301
|
[10] |
Xiao X B, Zhang W B, Yu W Y, Wang N and Tang B Y 2009 Physica B 404 2234
|
[11] |
Gremaud R, Broedersz C P, Borsa D M, Schreuders H, Rector J H, B Dam B and Griessen R 2007 Adv. Mater. 19 2813
|
[12] |
Araújo C M and Ahuja R 2005 J. Alloys Comp. 404 220
|
[13] |
Hou Z F 2006 Journal of Power Sources 159 111
|
[14] |
Bouhadda Y, Rabehi A and Bezzari-Tahar-Chaouche S 2007 Revue des Energies Renouvelables 10 545
|
[15] |
Alapati S V, Johnson J K and Sholl D S 2007 J. Alloys Comp. 446 23
|
[16] |
Velikokhatnyi O I and Kumta P N 2007 Materials Science and Engineering B 140 114
|
[17] |
Akai H 1989 J. Phys.: Condens. Matter 1 8045
|
[18] |
Akai H 2002 MACHIKANEYAMA2002v08
|
[19] |
Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
|
[20] |
Friedlmeier G M and Bolcich J C 1988 International Journal of Hydrogen Energy 13 467
|
[21] |
Klose W and Stuke V 1995 International Journal of Hydrogen Energy 20 309
|
[22] |
Vajeeston P, Ravindran P, Kjekshus A and Fjellvabg H 2002 Phys. Rev. Lett. 89 175506
|
[23] |
Bortz M, Bertheville B, Bottger G and Yvon K 1999 J. Alloys Comp. 287 L4
|
[24] |
Kittel C 1986 Introduction to Solid State Physics (New York: Wiley)
|
[25] |
Fenman R P 1939 Phys. Rev. 56 340
|
[26] |
Moriwaki T, Akahama Y and Kawamura H 2006 J. Phys. Soc. Jpn. 75 074603
|
[27] |
Nakamura H, Nguyen-Manh D and Pettifor D G 1998 J. Alloys Comp. 281 81
|
[28] |
Novaković N, Novaković J G, Matović L, Manasijević M, Radisavljević I, Mamula B P and Ivanović N 2010 International Journal of Hydrogen Energy 35 598
|
[29] |
Friedlmeier G M and Bolcich J C 1988 International Journal of Hydrogen Energy 13 467
|
[30] |
Klose W and Stuke V 1995 International Journal of Hydrogen Energy 20 309
|
[31] |
Gremaud R, Broedersz C P, Borsa D M, Schreuders I H, Rector I J H and Dam B 2007 Adv. Mater. 19 2813
|
[32] |
Zeng Q, Su K, Zhang L, Xu Y, Cheng L and Yan X 2006 J. Phys. Chem. 35 1385
|
[33] |
Alapati S V, Johnson J K and Sholl D S 2006 J. Phys. Chem. B 110 8769
|
[34] |
Vajeeston P, Ravindran P, Hauback B C, Fjellvag H, Kjekshus A, Furuseth S and Hanfland M 2006 Phys. Rev. B 73 224102
|
[35] |
Yu R and Lam P K 1988 Phys. Rev. B 37 8730
|
[36] |
Westerwaal R, Broedersz C, Gremaud R, Slaman M, Borgschulte A, Lohstroh W, Tschersich K, Fleischhauer H, Dam B and Griessen R 2008 Thin Solid Films 516 4351
|
[37] |
Cotton F A 1963 Chemical Applications of Group Theory (New York: Interscience)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|