Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 077301    DOI: 10.1088/1674-1056/21/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Generating and reversing spin accumulation by temperature gradient in a quantum dot attached to ferromagnetic leads

Bai Xu-Fang(白旭芳)a), Chi Feng(迟锋) b)†, Zheng Jun(郑军)c), and Li Yi-Nan(李亦楠)b)
a College of Physics and Electronic Information, Inner Mongolia National University, Tongliao 028043, China;
b College of Engineering, Bohai University, Jinzhou 121013, China;
c SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  We propose to generate and reverse the spin accumulation in a quantum dot (QD) by using the temperature difference between the two ferromagnetic leads connected to the dot. The electrons are driven purely by the temperature gradient in the absence of electric bias and magnetic field. In the Coulomb blockade regime, we find two ways to reverse the spin accumulation. One is by adjusting the QD energy level with a fixed temperature gradient, and the other is by reversing the temperature gradient direction for a fixed value of the dot level. The spin accumulation in the QD can be enhanced by the magnitudes of both the leads' spin polarization and the asymmetry of the dot--lead coupling strengths. The present device is quite simple, and the obtained results may have practical usage in spintronics or quantum information processing.
Keywords:  quantum dot      temperature gradient      spin accumulation      ferromagnetic leads  
Received:  07 December 2011      Revised:  31 December 2011      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704011), the SKLSM, China (Grant No. CHJG200901), and the LNET, China (Grant No. 2009R01).
Corresponding Authors:  Chi Feng     E-mail:  chifeng@semi.ac.cn

Cite this article: 

Bai Xu-Fang(白旭芳), Chi Feng(迟锋), Zheng Jun(郑军), and Li Yi-Nan(李亦楠) Generating and reversing spin accumulation by temperature gradient in a quantum dot attached to ferromagnetic leads 2012 Chin. Phys. B 21 077301

[1] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[2] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
[3] Liu P and Xiong S J 2009 Chin. Phys. B 18 5414
[4] Koppens F H L, Buizerk C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Nature 442 766
[5] PressD, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218
[6] Greilich A, Economou S E, Spatzek S, Yakovlev D R, Reuter D, Wieck A D, Reinecke T L and Bayer M 2009 Nat. Phys. 5 262
[7] Xu X D, Wu Y W, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
[8] Ebbens A, Krizhanovskii D N, Tartakovskii A I, Pulizzi F, Wright T, Savelyev A V, Skolnick M S and Hopkinson M 2005 Phys. Rev. B 72 073307
[9] Clark S M, Fu K M C, Ladd T D and Yamamoto Y 2007 Phys. Rev. Lett. 99 040501
[10] Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[11] Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
[12] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[13] Chi F and Li S S 2006 J. Appl. Phys. 100 113703
[14] Ye Z C, Nie Y H and Liang J Q 2011 Chin. Phys. B 20 127202
[15] Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802
[16] Frolov S M, L黶cher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature 458 868
[17] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
[18] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
[19] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[20] Dubi Y and Di Ventra M 2009 Phys. Rev. B 79 081302(R)
[21] Hatami M, Bauer G E W, Zhang Q and Kelly P J 2009 Phys. Rev. B 79 174426
[22] Świrkowicz R, Wierzbicki M and Barnaś J 2009 Phys. Rev. B 80 195409
[23] Ying Y B and Jin G J 2010 Appl. Phys. Lett. 96 093104
[24] Hamaya K, Masubuchi S, Kawamura M, Machida T, Jung M, Shibata K, Hirakawa K, Taniyama T, Ishida S and Arakawa Y 2007 Appl. Phys. Lett. 90 053108
[25] Hamaya K, Kitabatake M, Shibata K, Jung M, Kawamura M, Machida T, Ishida S and Arakawa Y 2007 Appl. Phys. Lett. 91 022107
[26] Hamaya K, Kitabatake M, Shibata K, Jung M, Kawamura M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2008 Phys. Rev. B 77 081302(R)
[27] Stefański P 2009 Phys. Rev. B 79 085312
[28] Chi F and Li S S 2005 Chin. Phys. Lett. 22 2035
[29] Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 0783
[30] Wu S Q, Hou T, Zhao G P and Yu W L 2010 Chin. Phys. B 19 047202
[31] Chi F, Sun L L, Huang L and Zhao J 2011 Chin. Phys. B 20 017303
[32] Souza F M, Egues J C and Jauho A P 2007 Phys. Rev. B 75 165303
[33] Rudzinski W and Barnas J 2001 Phys. Rev. B 64 085318
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!