CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Generating and reversing spin accumulation by temperature gradient in a quantum dot attached to ferromagnetic leads |
Bai Xu-Fang(白旭芳)a), Chi Feng(迟锋) b)†, Zheng Jun(郑军)c), and Li Yi-Nan(李亦楠)b) |
a College of Physics and Electronic Information, Inner Mongolia National University, Tongliao 028043, China; b College of Engineering, Bohai University, Jinzhou 121013, China; c SKLSM, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China |
|
|
Abstract We propose to generate and reverse the spin accumulation in a quantum dot (QD) by using the temperature difference between the two ferromagnetic leads connected to the dot. The electrons are driven purely by the temperature gradient in the absence of electric bias and magnetic field. In the Coulomb blockade regime, we find two ways to reverse the spin accumulation. One is by adjusting the QD energy level with a fixed temperature gradient, and the other is by reversing the temperature gradient direction for a fixed value of the dot level. The spin accumulation in the QD can be enhanced by the magnitudes of both the leads' spin polarization and the asymmetry of the dot--lead coupling strengths. The present device is quite simple, and the obtained results may have practical usage in spintronics or quantum information processing.
|
Received: 07 December 2011
Revised: 31 December 2011
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
72.15.Jf
|
(Thermoelectric and thermomagnetic effects)
|
|
73.50.Lw
|
(Thermoelectric effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10704011), the SKLSM, China (Grant No. CHJG200901), and the LNET, China (Grant No. 2009R01). |
Corresponding Authors:
Chi Feng
E-mail: chifeng@semi.ac.cn
|
Cite this article:
Bai Xu-Fang(白旭芳), Chi Feng(迟锋), Zheng Jun(郑军), and Li Yi-Nan(李亦楠) Generating and reversing spin accumulation by temperature gradient in a quantum dot attached to ferromagnetic leads 2012 Chin. Phys. B 21 077301
|
[1] |
Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
|
[2] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[3] |
Liu P and Xiong S J 2009 Chin. Phys. B 18 5414
|
[4] |
Koppens F H L, Buizerk C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Nature 442 766
|
[5] |
PressD, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218
|
[6] |
Greilich A, Economou S E, Spatzek S, Yakovlev D R, Reuter D, Wieck A D, Reinecke T L and Bayer M 2009 Nat. Phys. 5 262
|
[7] |
Xu X D, Wu Y W, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
|
[8] |
Ebbens A, Krizhanovskii D N, Tartakovskii A I, Pulizzi F, Wright T, Savelyev A V, Skolnick M S and Hopkinson M 2005 Phys. Rev. B 72 073307
|
[9] |
Clark S M, Fu K M C, Ladd T D and Yamamoto Y 2007 Phys. Rev. Lett. 99 040501
|
[10] |
Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
|
[11] |
Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
|
[12] |
Datta S and Das B 1990 Appl. Phys. Lett. 56 665
|
[13] |
Chi F and Li S S 2006 J. Appl. Phys. 100 113703
|
[14] |
Ye Z C, Nie Y H and Liang J Q 2011 Chin. Phys. B 20 127202
|
[15] |
Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802
|
[16] |
Frolov S M, L黶cher S, Yu W, Ren Y, Folk J A and Wegscheider W 2009 Nature 458 868
|
[17] |
Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
|
[18] |
Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
|
[19] |
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
|
[20] |
Dubi Y and Di Ventra M 2009 Phys. Rev. B 79 081302(R)
|
[21] |
Hatami M, Bauer G E W, Zhang Q and Kelly P J 2009 Phys. Rev. B 79 174426
|
[22] |
Świrkowicz R, Wierzbicki M and Barnaś J 2009 Phys. Rev. B 80 195409
|
[23] |
Ying Y B and Jin G J 2010 Appl. Phys. Lett. 96 093104
|
[24] |
Hamaya K, Masubuchi S, Kawamura M, Machida T, Jung M, Shibata K, Hirakawa K, Taniyama T, Ishida S and Arakawa Y 2007 Appl. Phys. Lett. 90 053108
|
[25] |
Hamaya K, Kitabatake M, Shibata K, Jung M, Kawamura M, Machida T, Ishida S and Arakawa Y 2007 Appl. Phys. Lett. 91 022107
|
[26] |
Hamaya K, Kitabatake M, Shibata K, Jung M, Kawamura M, Ishida S, Taniyama T, Hirakawa K, Arakawa Y and Machida T 2008 Phys. Rev. B 77 081302(R)
|
[27] |
Stefański P 2009 Phys. Rev. B 79 085312
|
[28] |
Chi F and Li S S 2005 Chin. Phys. Lett. 22 2035
|
[29] |
Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 0783
|
[30] |
Wu S Q, Hou T, Zhao G P and Yu W L 2010 Chin. Phys. B 19 047202
|
[31] |
Chi F, Sun L L, Huang L and Zhao J 2011 Chin. Phys. B 20 017303
|
[32] |
Souza F M, Egues J C and Jauho A P 2007 Phys. Rev. B 75 165303
|
[33] |
Rudzinski W and Barnas J 2001 Phys. Rev. B 64 085318
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|