Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 066301    DOI: 10.1088/1674-1056/21/6/066301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The influence of cation additives on the NIR luminescence intensity of Er3+-doped borate glasses

Zhou Yong-Liang(周永亮), Zhang Xiao-Song(张晓松), Xu Jian-Ping(徐建萍), Zhang Zhong-Peng(张忠朋), Zhang Gao-Feng(张高峰), Wei Feng-Wei(魏凤巍), and Li Lan (李岚)
Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin University of Technology, Tianjin 300384, China
Abstract  Er3+-doped 25BaO-(25-x)SiO2-xAl2O3-25B2O3 transparent glasses are prepared with x=0, 12.5 and 25 by a solid-state reaction. The Er-related NIR luminescence intensity, which corresponds to the transition of 4I15/2-4I13/2, is obviously altered with different silicon/aluminum ratios. The Judd-Ofelt parameters of the Er3+ ions are adopted to explain the intensity change in the NIR fluorescence, and the Raman scattering intensity versus the amount of Al and/or Si components are discussed. The spectra of the three samples are quite similar in the peak positions, but different in intensity. The maximal phonon density of state for the samples is calculated from the Raman spectra and is correlated to the NIR luminescence efficiency.
Keywords:  maximal phonon density of state      Judd-Ofelt intensity parameter      Er3+-doped borate glasses  
Received:  12 August 2011      Revised:  16 February 2012      Accepted manuscript online: 
PACS:  63.20.-e (Phonons in crystal lattices)  
  95.30.Ky (Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))  
  64.70.ph (Nonmetallic glasses (silicates, oxides, selenides, etc.))  
Fund: Project supported by the Natural Science Foundation of Tianjin (Grant Nos. 09JCYBJC01400 and 11JCYBJC00300), the Natural Science Foundation of the Tianjin Education Committee (Grant No. 20071207), and Tianjin Key Subject for Materials Physics and Chemistry.
Corresponding Authors:  Li Lan     E-mail:  lilan@tjut.edu.cn

Cite this article: 

Zhou Yong-Liang(周永亮), Zhang Xiao-Song(张晓松), Xu Jian-Ping(徐建萍), Zhang Zhong-Peng(张忠朋), Zhang Gao-Feng(张高峰), Wei Feng-Wei(魏凤巍), and Li Lan (李岚) The influence of cation additives on the NIR luminescence intensity of Er3+-doped borate glasses 2012 Chin. Phys. B 21 066301

[1] Pisarski W A, Pisarska J, Lisiecki R, Grobelny L, Grazyna D D, Witold R R 2009 Opt. Mater. 31 1781
[2] Yan X W, Yu H W, Zheng J G, Li M Z, Jiang X Y, Duan W T, Cao D X, Wang M Z, Shan X T and Zhang Y L 2011 Acta Phys. Sin. 60 047801 (in Chinese)
[3] Zhang X S, Li L and Huang Q S 2010 J. Nanosci. Nanotech. 10 5288
[4] Li C R, Li S F, Dong B, Cheng Y Q, Yin H T, Yang J and Chen Y 2011 Chin. Phys. B 20 017803
[5] Rai S and Hazarika S 2008 Opt. Mater. 30 1343
[6] Desirena H, RosaE D, Díaz-Torres L A and Kumar G A 2006 Opt. Mater. 28 560
[7] Reddy A A, Babu S S and Pradeesh K 2011 J. Alloys Compd. 509 4047
[8] Debnath R, Nayak A and Ghosh A 2007 Chem. Phys. Lett. 444 324
[9] Xu S Y, Zhang X S, Zhou Y L, Xi Q and Li L 2011 Chin. Phys. B 20 037804
[10] Lucacel R C and Ardelean I 2007 J. Non-Cryst. Solids 353 2020
[11] Yano T, Kunimine N, Shibata S and Yamane M 2003 J. Non-Cryst. Solids 321 147
[12] Pan Z and Morgan SH 1997 J. Non-Cryst. Solids 201 130
[13] Layne C B, Lowdermilk W H and Weber M J 1977 Phys. Rev. B 16 10
[14] Hirao K, Tanabe S, Kishimoto S, Tamaia K and Sogaa N 1991 J. Non-Cryst. Solids 135 90
[15] Tsang W S, Yu W M and Mak C L 2002 J. Appl. Phys. 91 1871
[16] Gcuil E, Szollosy I and Arnold M 1994 J. Therm. Anal. Calorim. 42 1007
[17] Fatih S, Fatih D and Murat B 2006 Korean J. Chem. Eng. 23 736
[18] Yun Y H and Bray P J 1978 J. Non-Cryst. Solids 27 363
[19] Takashi Y, Hiromitsu F and Hiroshi K 1972 J. Inorg. Nucl. Chem. 34 2739
[20] Ofelt G S 1962 J. Chem. Phys. 37 511
[21] Yao B Q, Zheng L L, Yang X T and Wang T H 2009 Chin. Phys. B 18 1674
[22] Carnall W T, Fields P R and Wybourne B G 1965 J. Chem. Phys. 42 3797
[23] Ebendor H, Ehrta D and Bettinelli M 1998 J. Non-Cryst. Solids 240 66
[24] Tanabe S, Ohyagi T and Soga N 1992 Phys. Rev. B 46 3305
[25] Yao W Z, Guo J C, Lu H G and Li S D 2009 J. Phys. Chem. 113 2561
[26] Song X L, Qu Y X, Xu C and Jiang M H 1998 Chin. J. Light Scattering 10 30
[27] Shao Y W, Ji Z L, Qiang F and Hui N D 2008 Spectrochim Acta A 69 921
[28] Luo Y R 2005 Handbook of Bond Energics (Beijing: Science Press) (in Chinese) p. 284
[29] Vetrone F, Boyer J C, Capobianco J A, Speghini A and Bettinelli M 2004 J. Appl. Phys. 96 661
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advances of phononics in 2012—2022
Ya-Fei Ding(丁亚飞), Gui-Mei Zhu(朱桂妹), Xiang-Ying Shen(沈翔瀛),Xue Bai(柏雪), and Bao-Wen Li(李保文). Chin. Phys. B, 2022, 31(12): 126301.
[3] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[4] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[5] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[6] Time evolution law of a two-mode squeezed light field passing through twin diffusion channels
Hai-Jun Yu(余海军) and Hong-Yi Fan(范洪义). Chin. Phys. B, 2022, 31(2): 020301.
[7] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[8] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[9] Phonon dispersion relations of crystalline solids based on LAMMPS package
Zhiyong Wei(魏志勇), Tianhang Qi(戚天航), Weiyu Chen(陈伟宇), and Yunfei Chen(陈云飞). Chin. Phys. B, 2021, 30(11): 114301.
[10] Analytical solution of crystal diffraction intensity
Wan-Li Shang(尚万里), Ao Sun(孙奥), Hua-Bin Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Xu-Fei Xie(谢旭飞), Xing-Sen Che(车兴森), Li-Fei Hou(侯立飞), Wen-Hai Zhang(张文海), Miao Li(黎淼), Jun Shi(施军), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉). Chin. Phys. B, 2021, 30(11): 116101.
[11] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[12] Quantum computation and simulation with vibrational modes of trapped ions
Wentao Chen(陈文涛), Jaren Gan, Jing-Ning Zhang(张静宁), Dzmitry Matuskevich, and Kihwan Kim(金奇奂). Chin. Phys. B, 2021, 30(6): 060311.
[13] High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田). Chin. Phys. B, 2021, 30(5): 056202.
[14] Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(3): 036301.
[15] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
No Suggested Reading articles found!