Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 066501    DOI: 10.1088/1674-1056/21/6/066501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The effect of intragranular microstress in Al2O3–SiC nanocomposites

Wang Zhi-Yuan(王志远)a)b), Wu Yu-Gong(吴裕功)a)b)†, Tong Shuai(佟帅)a)b), and Wu Si-Qi(吴斯骐)a)b)
a. School of Electronic and Information Engineering, Tianjin University, Tianjin 300072, China;
b. Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education (Tianjin University), Tianjin 300072, China
Abstract  A theoretical model is established to investigate the intragranular particle residual stress in Al2O3-SiC nanocomposites. Using this model, we calculate the average compressive stress on the Al2O3 grain boundary (GB) and the average tensile stress within Al2O3 grains caused by SiC nanoparticles. The normal compressive stress strengthens the GB, and the average tensile stress weakens the grains. The model gives a reasonable interpretation of the strength changes of Al2O3-SiC nanocomposites with the number of SiC particles.
Keywords:  nanocomposite      grain boundary strengthening      internal stress      weakening  
Received:  08 October 2011      Revised:  08 December 2011      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  78.67.Sc (Nanoaggregates; nanocomposites)  
  83.60.Hc (Normal stress differences and their effects (e.g. rod climbing))  
  61.16.-w  
Fund: Project supported by the Tianjin Natural Science Foundation, China (Grant No. 09JCZDJC22500).
Corresponding Authors:  Wu Yu-Gong     E-mail:  wuyugong@tju.edu.cn

Cite this article: 

Wang Zhi-Yuan(王志远), Wu Yu-Gong(吴裕功), Tong Shuai(佟帅), and Wu Si-Qi(吴斯骐) The effect of intragranular microstress in Al2O3–SiC nanocomposites 2012 Chin. Phys. B 21 066501

[1] Peng Y J, Zhang S P, Wang Y H and Yang Q 2008 Chin. Phys. B 17 3505
[2] Long Y Z, Li M M, Sui W M, Kong Q S and Zhang L 2009 Chin. Phys. B 18 1221
[3] Zhang R C, Liu L and Xu X L 2011 Chin. Phys. B 20 086101
[4] Yang M J, Shen Q and Zhang L M 2011 Chin. Phys. B 20 106202
[5] Xiang J, Song F Z, Shen X Q and Chu Y Q 2010 Acta Phys. Sin. 59 4794 (in Chinese)
[6] Zhang S, Chen X F, Yin J H, Zhang H W, Chen J L, Jiang H W and Wu G H 2010 Acta Phys. Sin. 59 6593 (in Chinese)
[7] Niihara K 1991 J. Ceram. Soc. Jpn. 99 974
[8] Xu Y P, Nakahira A and Niihara K 1944 J. Ceram. Soc. Jpn. 102 310
[9] Sternitzke M 1997 J. Eur. Ceram. Soc. 17 1061
[10] Fang J X, Harmer M P and Chan H M 1997 J. Mater. Sci. 32 3427
[11] Shao G Q, Duan X L and Yuan R Z 2003 Mater. Sci. Tech. 11 211 (in Chinese)
[12] Liu H L, Huang C Z, Qin H F, Wang S L, Sun J, Zou B and Ai X 2004 Powder Metall. Tech. 22 98 (in Chinese)
[13] Choi S M and Awaji H 2005 Sci. Tech. Adv. Mater. 6 2
[14] Ohji T, Jeong Y K, Choa Y H and Niihara K 1998 J. Am. Ceram. Soc. 81 1453
[15] Zhang Z and Chen D L 2007 Sci. Technol. Adv. Mater. 8 5
[16] Zhao J, Sterns L C, Harmer M P, Chan H M, Miller G A and Cook R F 1993 J. Am. Ceram. Soc. 76 503
[17] Chou I A, Chan H M and Harmer M P 1996 J. Am. Ceram. Soc. 79 2403
[18] Wu H Z, Roberts S G and Derby B 2008 Acta Mater. 56 140
[19] Pezzotti G and Wolfgang H M 2001 Compd. Mater. Sci. 22 155
[20] Sun X D, Li J G, Guo S W and Xiu Z M 2005 J. Am. Ceram. Soc. 88 1536
[21] Lü B, Zhang F C, Luo H H and Zhang M 2011 Scripta Mater. 66 260
[22] Wang H Z, Gao L and Guo J K 2000 Ceram. Int. 26 391
[23] Levin I, Kaplan W D, Brandon D G and Layous A 1995 J. Am. Ceram. Soc. 78 254
[24] Sciti D, Vicens J and Bellosi A 2002 J. Mater. Sci. 37 3747
[25] Zhang F C, Luo H H, Wang T S, Zhang M and Sun Y N 2008 Compos. Sci. Technol. 68 3245
[26] Timoshenko S P and Goodier J N 1969 Theory of Elasticity, 3rd edn. (New York: McGraw-Hill)
[27] Selsing J 1961 J. Am. Ceram. Soc. 44 419
[28] Goodman L E and Warner W H 2001 Statics (New York: Dover Publications)
[29] Taya M, Hayashi S, Kobayashi A S and Yoon H S 1990 J. Am. Ceram. Soc. 72 1382
[30] Davige R W and Green T J 1968 J. Mater. Sci. 3 629
[1] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[2] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[3] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[4] Effect of Mo doping on phase change performance of Sb2Te3
Wan-Liang Liu(刘万良), Ying Chen(陈莹), Tao Li(李涛), Zhi-Tang Song(宋志棠), and Liang-Cai Wu(吴良才). Chin. Phys. B, 2021, 30(8): 086801.
[5] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[6] Sm–Co high-temperature permanent magnet materials
Shiqiang Liu(刘世强). Chin. Phys. B, 2019, 28(1): 017501.
[7] Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase
Yu-Qing Li(李玉卿), Ming Yue(岳明), Yi Peng(彭懿), Hong-Guo Zhang(张红国). Chin. Phys. B, 2018, 27(8): 087502.
[8] Silica encapsulated ZnO quantum dot-phosphor nanocomposites: Sol-gel preparation and white light-emitting device application
Ya-Chuan Liang(梁亚川), Kai-Kai Liu(刘凯凯), Ying-Jie Lu(卢英杰), Qi Zhao(赵琪), Chong-Xin Shan(单崇新). Chin. Phys. B, 2018, 27(7): 078102.
[9] Enhanced photoresponse performance in Ga/Ga2O3 nanocomposite solar-blind ultraviolet photodetectors
Shu-Juan Cui(崔书娟), Zeng-Xia Mei(梅增霞), Yao-Nan Hou(侯尧楠), Quan-Sheng Chen(陈全胜), Hui-Li Liang(梁会力), Yong-Hui Zhang(张永晖), Wen-Xing Huo(霍文星), Xiao-Long Du(杜小龙). Chin. Phys. B, 2018, 27(6): 067301.
[10] Graphene-enhanced thermoelectric properties of p-type skutterudites
Dandan Qin(秦丹丹), Yuan Liu(刘嫄), Xianfu Meng(孟宪福), Bo Cui(崔博), Yaya Qi(祁亚亚), Wei Cai(蔡伟), Jiehe Sui(隋解和). Chin. Phys. B, 2018, 27(4): 048402.
[11] Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
Chuanbing Rong(荣传兵), Baogen Shen(沈保根). Chin. Phys. B, 2018, 27(11): 117502.
[12] Rare earth permanent magnets prepared by hot deformation process
Ren-Jie Chen(陈仁杰), Ze-Xuan Wang(王泽轩), Xu Tang(唐旭), Wen-Zong Yin(尹文宗), Chao-Xiang Jin(靳朝相), Jin-Yun Ju(剧锦云), Don Lee(李东), A-Ru Yan(闫阿儒). Chin. Phys. B, 2018, 27(11): 117504.
[13] Design and optimization of carbon nanotube/polymer actuator by using finite element analysis
Wei Zhang(张薇), Luzhuo Chen(陈鲁倬), Jianmin Zhang(张健敏), Zhigao Huang(黄志高). Chin. Phys. B, 2017, 26(4): 048801.
[14] Modified Maxwell model for predicting thermal conductivity of nanocomposites considering aggregation
Wen-Kai Zhen(甄文开), Zi-Zhen Lin(蔺子甄), Cong-Liang Huang(黄丛亮). Chin. Phys. B, 2017, 26(11): 114401.
[15] Novel Fe3O4@SiO2@Ag@Ni trepang-like nanocomposites: High-efficiency and magnetic recyclable catalysts for organic dye degradation
Chao Li(李超), Jun-Jie Sun(孙俊杰), Duo Chen(陈铎), Guang-Bing Han(韩广兵), Shu-Yun Yu(于淑云), Shi-Shou Kang(康仕寿), Liang-Mo Mei(梅良模). Chin. Phys. B, 2016, 25(8): 088201.
No Suggested Reading articles found!