Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization |
Yu-Tao Tan(谭宇涛)1, Lu-Qin Wang(王鲁钦)1,†, Zi Wang(王子)1, Jiebin Peng(彭洁彬)1, and Jie Ren(任捷)1,2,‡ |
1 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2 Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China |
|
|
Abstract We propose the concept of thermal demultiplexer, which can split the heat flux in different frequency ranges into different directions. We demonstrate this device concept in a honeycomb lattice with dangling atoms. From the view of effective negative mass, we give a qualitative explanation of how the dangling atoms change the original transport property. We first design a two-mass configuration thermal demultiplexer, and find that the heat flux can flow into different ports in corresponding frequency ranges roughly. Then, to improve the performance, we choose the suitable masses of dangling atoms and optimize the four-mass configuration with genetic algorithm. Finally, we give out the optimal configuration with a remarkable effect. Our study finds a way to selectively split spectrum-resolved heat to different ports as phonon splitter, which would provide a new means to manipulate phonons and heat, and to guide the design of phononic thermal devices in the future.
|
Received: 01 October 2020
Revised: 13 December 2020
Accepted manuscript online: 24 December 2020
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
63.20.Pw
|
(Localized modes)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935010 and 11775159), the Shanghai Science and Technology Committee, China (Grant Nos. 18ZR1442800 and 18JC1410900), and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology. |
Corresponding Authors:
†Corresponding author. E-mail: Rick_wanglq@163.com ‡Corresponding author. E-mail: Xonics@tongji.edu.cn
|
Cite this article:
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷) Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization 2021 Chin. Phys. B 30 036301
|
1 Li N B, Ren J, Wang L, Zhang G, Hanggi P and Li B W 2012 Rev. Mod. Phys. 84 1045 2 Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa and Shiomi J 2020 Phys. Rev. X 10 021050 3 Chakraborty P, Liu Y, Ma T, Guo X, Cao L, Hu R and Wang Y 2020 ACS Appl. Mater. Interfaces 12 8795 4 Ju S H, Shiga T, Feng L, Hou Z F, Tsuda K and Shiomi J 2017 Phys. Rev. X 7 021024 5 Yamawaki M, Ohnishi M, Ju S H and Shiomi J 2018 Sci. Adv. 4 eaar4192 6 Yang N, Ni X X, Jiang J X and Li B W 2012 Appl. Phys. Lett. 100 093107 7 Song Q C, An M, Chen X D, Peng Z, Zang J F and Yang N 2016 Nanoscale 8 14943 8 Ma D K, Wan X and Yang N 2018 Phys. Rev. B 98 245420 9 Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K J, Cai W W, Balandin A A and Ruoff R S 2012 Nat. Mater. 11 203 10 Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S and Nomura M 2017 Sci. Adv. 3 e1700027 11 Zhai J X, Zhang Q Y, Cheng Z H, Ren J, Ke Y Q and Li B W 2019 Phys. Rev. B 99 195429 12 Evans W J, Hu L and Keblinski P 2010 Appl. Phys. Lett. 96 203112 13 Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301 14 Ren J and Zhu J X 2013 Phys. Rev. B 87 241412(R) 15 Li B W, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501 16 Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601 17 Wang L and Li B W 2008 Phys. Rev. Lett. 101 267203 18 Li S, Ding X D, Ren J, Moya M, Li J, Sun J and Salje E K H 2014 Sci. Rep. 4 6375 19 Wang L and Li B W 2007 Phys. Rev. Lett. 99 177208 20 Han H, Li B W, Volz S and Kosevich Y A 2015 Phys. Rev. Lett. 114 145501 21 Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121 22 Giazotto F and Martinez-Perez M J 2012 Nature 492 401 23 Ito K, Nishikawa K, Iizuka H and Toshiyoshi H 2014 Appl. Phys. Lett. 105 253503 24 Su L, Piggott A Y, Sapra N V, Petykiewicz J and Vuckovic J 2017 ACS Photon. 5 301 25 Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M and Vuckovic J 2015 Nat. Photon. 9 374 26 Faiz M S, Addouche M, Zain A R M, Siow K S, Chaalane A and Khelif A 2020 Appl. Sci. 10 4594 27 Moradi P and Bahrami A 2019 Chin. J. Phys. 59 291 28 Rostami-Dogolsara B, Moravvej-Farshi M K and Nazari F 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1468 29 Liu X N, Hu G K, Sun C T and Huang G L 2011 J. Sound Vib. 330 2536 30 Liu X N and Hu G K and Vestnik S 2016 J. Mech. Eng. 62 403 31 Wang Y F, Wang Y Z, Wu B, Chen W Q and Wang Y S 2020 Appl. Mech. Rev. 72 040801 32 Zhang D M, Ren J, Zhou T X and Li B W 2019 New J. Phys. 21 093033 33 Yao S S, Zhou X M and Hu G K 2008 New J. Phys. 10 043020 34 Wang J S, Wang J and Lu J T 2008 Eur. Phys. Jour. B 62 381 35 Wang J S, Agarwalla B K, Li H N and Thingna J 2014 Front. Phys. 9 673 36 Dhar A and Roy A J 2006 Stat. Phys. 125 805 37 Dhar A 2008 Adv. Phys. 57 457 38 Long Y, Ren J, Li Y H and Chen H 2019 Appl. Phys. Lett. 114 181105 39 Long Y, Ren J and Chen H 2020 Phys. Rev. Lett. 124 185501 40 Wang Y and Ren J 10.1039/C9CP05280A 2020 Phys. Chem. Chem. Phys. 22 4481 41 Gao Z B, Dong X, Li N B and Ren J 2017 Nano Lett. 17 772 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|