Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 036301    DOI: 10.1088/1674-1056/abd68b
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization

Yu-Tao Tan(谭宇涛)1, Lu-Qin Wang(王鲁钦)1,†, Zi Wang(王子)1, Jiebin Peng(彭洁彬)1, and Jie Ren(任捷)1,2,
1 Center for Phononics and Thermal Energy Science, China-EU Joint Laboratory on Nanophononics, Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; 2 Shanghai Research Institute for Intelligent Autonomous Systems, Tongji University, Shanghai 200092, China
Abstract  We propose the concept of thermal demultiplexer, which can split the heat flux in different frequency ranges into different directions. We demonstrate this device concept in a honeycomb lattice with dangling atoms. From the view of effective negative mass, we give a qualitative explanation of how the dangling atoms change the original transport property. We first design a two-mass configuration thermal demultiplexer, and find that the heat flux can flow into different ports in corresponding frequency ranges roughly. Then, to improve the performance, we choose the suitable masses of dangling atoms and optimize the four-mass configuration with genetic algorithm. Finally, we give out the optimal configuration with a remarkable effect. Our study finds a way to selectively split spectrum-resolved heat to different ports as phonon splitter, which would provide a new means to manipulate phonons and heat, and to guide the design of phononic thermal devices in the future.
Keywords:  phonon transport      thermal demultiplexer      optimization algorithm  
Received:  01 October 2020      Revised:  13 December 2020      Accepted manuscript online:  24 December 2020
PACS:  63.20.-e (Phonons in crystal lattices)  
  63.20.Pw (Localized modes)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11935010 and 11775159), the Shanghai Science and Technology Committee, China (Grant Nos. 18ZR1442800 and 18JC1410900), and the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology.
Corresponding Authors:  Corresponding author. E-mail: Rick_wanglq@163.com Corresponding author. E-mail: Xonics@tongji.edu.cn   

Cite this article: 

Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷) Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization 2021 Chin. Phys. B 30 036301

1 Li N B, Ren J, Wang L, Zhang G, Hanggi P and Li B W 2012 Rev. Mod. Phys. 84 1045
2 Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa and Shiomi J 2020 Phys. Rev. X 10 021050
3 Chakraborty P, Liu Y, Ma T, Guo X, Cao L, Hu R and Wang Y 2020 ACS Appl. Mater. Interfaces 12 8795
4 Ju S H, Shiga T, Feng L, Hou Z F, Tsuda K and Shiomi J 2017 Phys. Rev. X 7 021024
5 Yamawaki M, Ohnishi M, Ju S H and Shiomi J 2018 Sci. Adv. 4 eaar4192
6 Yang N, Ni X X, Jiang J X and Li B W 2012 Appl. Phys. Lett. 100 093107
7 Song Q C, An M, Chen X D, Peng Z, Zang J F and Yang N 2016 Nanoscale 8 14943
8 Ma D K, Wan X and Yang N 2018 Phys. Rev. B 98 245420
9 Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K J, Cai W W, Balandin A A and Ruoff R S 2012 Nat. Mater. 11 203
10 Maire J, Anufriev R, Yanagisawa R, Ramiere A, Volz S and Nomura M 2017 Sci. Adv. 3 e1700027
11 Zhai J X, Zhang Q Y, Cheng Z H, Ren J, Ke Y Q and Li B W 2019 Phys. Rev. B 99 195429
12 Evans W J, Hu L and Keblinski P 2010 Appl. Phys. Lett. 96 203112
13 Li B W, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
14 Ren J and Zhu J X 2013 Phys. Rev. B 87 241412(R)
15 Li B W, Wang L and Casati G 2006 Appl. Phys. Lett. 88 143501
16 Joulain K, Drevillon J, Ezzahri Y and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601
17 Wang L and Li B W 2008 Phys. Rev. Lett. 101 267203
18 Li S, Ding X D, Ren J, Moya M, Li J, Sun J and Salje E K H 2014 Sci. Rep. 4 6375
19 Wang L and Li B W 2007 Phys. Rev. Lett. 99 177208
20 Han H, Li B W, Volz S and Kosevich Y A 2015 Phys. Rev. Lett. 114 145501
21 Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
22 Giazotto F and Martinez-Perez M J 2012 Nature 492 401
23 Ito K, Nishikawa K, Iizuka H and Toshiyoshi H 2014 Appl. Phys. Lett. 105 253503
24 Su L, Piggott A Y, Sapra N V, Petykiewicz J and Vuckovic J 2017 ACS Photon. 5 301
25 Piggott A Y, Lu J, Lagoudakis K G, Petykiewicz J, Babinec T M and Vuckovic J 2015 Nat. Photon. 9 374
26 Faiz M S, Addouche M, Zain A R M, Siow K S, Chaalane A and Khelif A 2020 Appl. Sci. 10 4594
27 Moradi P and Bahrami A 2019 Chin. J. Phys. 59 291
28 Rostami-Dogolsara B, Moravvej-Farshi M K and Nazari F 2016 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63 1468
29 Liu X N, Hu G K, Sun C T and Huang G L 2011 J. Sound Vib. 330 2536
30 Liu X N and Hu G K and Vestnik S 2016 J. Mech. Eng. 62 403
31 Wang Y F, Wang Y Z, Wu B, Chen W Q and Wang Y S 2020 Appl. Mech. Rev. 72 040801
32 Zhang D M, Ren J, Zhou T X and Li B W 2019 New J. Phys. 21 093033
33 Yao S S, Zhou X M and Hu G K 2008 New J. Phys. 10 043020
34 Wang J S, Wang J and Lu J T 2008 Eur. Phys. Jour. B 62 381
35 Wang J S, Agarwalla B K, Li H N and Thingna J 2014 Front. Phys. 9 673
36 Dhar A and Roy A J 2006 Stat. Phys. 125 805
37 Dhar A 2008 Adv. Phys. 57 457
38 Long Y, Ren J, Li Y H and Chen H 2019 Appl. Phys. Lett. 114 181105
39 Long Y, Ren J and Chen H 2020 Phys. Rev. Lett. 124 185501
40 Wang Y and Ren J 10.1039/C9CP05280A 2020 Phys. Chem. Chem. Phys. 22 4481
41 Gao Z B, Dong X, Li N B and Ren J 2017 Nano Lett. 17 772
[1] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[2] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[3] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[4] Covalent coupling of DNA bases with graphene nanoribbon electrodes: Negative differential resistance, rectifying, and thermoelectric performance
Peng-Peng Zhang(张鹏鹏), Shi-Hua Tan(谭仕华)†, Xiao-Fang Peng(彭小芳)‡, and Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2020, 29(10): 106801.
[5] Polarization resolved analysis of phonon transport in a multi-terminal system
Yun-Feng Gu(顾云风), Liu-Tong Zhu(朱留通), Xiao-Li Wu(吴晓莉). Chin. Phys. B, 2019, 28(12): 124401.
[6] Surface effects on the thermal conductivity of silicon nanowires
Hai-Peng Li(李海鹏), Rui-Qin Zhang(张瑞勤). Chin. Phys. B, 2018, 27(3): 036801.
[7] Material properties dependent on the thermal transport in a cylindrical nanowire
Zhang Yong (张勇), Xie Zhong-Xiang (谢忠祥), Deng Yuan-Xiang (邓元祥), Yu Xia (喻霞), Li Ke-Min (李科敏). Chin. Phys. B, 2015, 24(12): 126302.
[8] A single diffractive optical element implementing spectrum-splitting and beam-concentration functions simultaneously with high diffraction efficiency
Ye Jia-Sheng (叶佳声), Wang Jin-Ze (王进泽), Huang Qing-Li (黄庆礼), Dong Bi-Zhen (董碧珍), Zhang Yan (张岩), Yang Guo-Zhen (杨国桢). Chin. Phys. B, 2013, 22(3): 034201.
[9] Ground-state structure determination and mechanical properties of palladium seminitride
Zhang Gang-Tai (张刚台), Bai Ting-Ting (白婷婷), Zhao Ya-Ru (赵亚儒), Lu Cheng (卢成). Chin. Phys. B, 2013, 22(11): 116104.
[10] Thermal conductance in a two-slit quantum waveguide
Nie Liu-Ying(聂六英), Li Chun-Xian(李春先), Zhou Xiao-Ping(周晓萍), Wang Cheng-Zhi(王成志), and Cheng Fang(程芳) . Chin. Phys. B, 2012, 21(2): 026301.
No Suggested Reading articles found!