CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Analytical solution of crystal diffraction intensity |
Wan-Li Shang(尚万里)1, Ao Sun(孙奥)1, Hua-Bin Du(杜华冰)1, Guo-Hong Yang(杨国洪)1, Min-Xi Wei(韦敏习)1,‡, Xu-Fei Xie(谢旭飞)1, Xing-Sen Che(车兴森)1, Li-Fei Hou(侯立飞)1, Wen-Hai Zhang(张文海)1, Miao Li(黎淼)2,†, Jun Shi(施军)3, Feng Wang(王峰)1, Hai-En He(何海恩)1, Jia-Min Yang(杨家敏)1, Shao-En Jiang(江少恩)1, and Bao-Han Zhang(张保汉)1 |
1 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; 2 College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China; 3 Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, Chongqing University, Chongqing 400030, China; 4 Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China |
|
|
Abstract Plasma density and temperature can be diagnosed by x-ray line emission measurement with crystal, and bent crystals such as von Hamos and Hall structures are proposed to improve the diffraction brightness. In this study, a straightforward solution for the focusing schemes of flat and bent crystals is provided. Simulations with XOP code are performed to validate the analytical model, and good agreements are achieved. The von Hamos or multi-cone crystal can lead to several hundred times intensity enhancements for a 200μm plasma source. This model benefits the applications of the focusing bent crystals.
|
Received: 20 January 2021
Revised: 12 May 2021
Accepted manuscript online: 14 May 2021
|
PACS:
|
61.05.cp
|
(X-ray diffraction)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
87.10.Ca
|
(Analytical theories)
|
|
Fund: Project supported by the National Natural Science Fundation of China (Grant Nos. 11775203 and 12075219) and the China Academy of Engineering Physics (CAEP) Foundation (Grant No. CX20210019). |
Corresponding Authors:
Miao Li, Min-Xi Wei
E-mail: limiao@cqupt.edu.cn;wmx17@sina.com
|
Cite this article:
Wan-Li Shang(尚万里), Ao Sun(孙奥), Hua-Bin Du(杜华冰), Guo-Hong Yang(杨国洪), Min-Xi Wei(韦敏习), Xu-Fei Xie(谢旭飞), Xing-Sen Che(车兴森), Li-Fei Hou(侯立飞), Wen-Hai Zhang(张文海), Miao Li(黎淼), Jun Shi(施军), Feng Wang(王峰), Hai-En He(何海恩), Jia-Min Yang(杨家敏), Shao-En Jiang(江少恩), and Bao-Han Zhang(张保汉) Analytical solution of crystal diffraction intensity 2021 Chin. Phys. B 30 116101
|
[1] Lindl J D, Amendt P, Berger R L, Glendinning S G, Glenzer S H, Haan S W, Kauffman R L, Landen O L and Suter L J 2004 Phys. Plasmas 11 339 [2] Renner O and Rosmej F B 2019 Matter Radiat. Extremes 4 024201 [3] Joshi T R, Hakel P, Hsu S C, Vold E L, Schmitt M J, Hoffman N M, Rauenzahn R M, Kagan G, Tang X Z, Mancini R C, Kim Y and Herrmann H W 2017 Phys. Plasmas 24 056305 [4] Zhang J and Chang T 2004 Fundaments of the Targets Physics for Laser Fusion (Beijing: National Defence Industry) [5] Shang W L, Betti R, Hu S X, Woo K, Hao L, Ren C, Christopherson A R, Bose A and Theobald W 2017 Phys. Rev. Lett. 119 195001 [6] Shang W L, Stoeckl C, Betti R, Regan S P, Sangster T C, Hu S X, Christopherson A, Gopalaswamy V, Cao D, Seka W, Michel D T, Davis A K, Radha P B, Marshall F J, Epstein R and Solodov A A 2018 Phys. Rev. E 98 033210 [7] Barrios M A, Moody J D, Suter L J, Sherlock M, Chen H, Farmer W, Jaquez J, Jones O, Kauffman R L, Kilkenny J D, Kroll J, Landen O L, Liedahl D A, Maclaren S A, Meezan N B, Nikroo A, Schneider M B, Thorn D B, Widmann K and Pérez-Callejo G 2018 Phys. Rev. Lett. 121 095002 [8] Missalla T, Uschmann I and Forster E 1999 Rev. Sci. Instrum. 70 1288 [9] Regan S P, Epstein R, Hamme B A, Suter L J, et al. 2013 Phys. Rev. Lett. 111 045001 [10] Regan S P, Epstein R, Hammel B A, et al. 2012 Phys. Plasmas 19 056307 [11] Schollmeier M S and Loisel G P 2016 Rev. Sci. Instrum. 87 123511 [12] Hall T A 1984 J. Phys. E 17 110 [13] Jarrott L C, Wei M S, McGuffey C, Beg F N, Nilson P M, Sorce C, Stoeckl C, Theoboald W, Sawada H, Stephens R B, Patel P K, McLean H S, Landen O L, Glenzer S H and Doppner T 2017 Rev. Sci. Instrum. 88 043110 [14] Bitter M, Hill K W, Gao L, Efthimion P C, Delgado-Apariccio L, Lazerson S and Pablant N 2016 Rev. Sci. Instrum. 87 11E333 [15] Takagi S and Wills H H 1962 Acta Cryst. 15 1311 [16] Takagi S 1969 J. Phys. Soc. Jpn. 26 1239 [17] del Río M S, Ferrero C and Mocella V 1997 Proc. SPIE. 3151 312 [18] del Río M S, Bernsto S, Savoia A and Cerrina F 1962 Rev. Sci. Instrum. 63 932 [19] del Río M S and Dejus R J 2011 Proc. SPIE. 8141 814115 [20] Harding E C, Ao T, Bailey J E, Loisel G, Sinars D B, Geissel M, Rochau G A and Smith I C 2015 Rev. Sci. Instrum. 86 043504 [21] Wang X J, Hu Z H and Wang Y N 2020 Phys. Rev. E 101 043203 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|