CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation |
Cheng-Bin Zhang(张成斌)1,2,3, Wei-Dong Li(李卫东)1, Ping Zhang(张平)4, and Bao-Tian Wang(王保田)2,3,4,† |
1 Institute of Theoretical Physics and Department of Physics, and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 3 Spallation Neutron Source Science Center, Dongguan 523803, China; 4 LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract The elastic anisotropy and superconductivity upon hydrostatic compression of α, ω, and β Hf are investigated using first-principle methods. The results of elastic anisotropies show that they increase with increasing pressure for α and ω phases, while decrease upon compression for β phase. The calculated superconducting transition temperatures are in excellent agreement with experiments. Electron-phonon coupling constants (λ) are increasing with pressure for α and ω phases, while decreasing for β phase. For β phase, the large values of λ are mainly due to the obvious TA1 soft mode. Under further compression, the TA1 soft vibrational mode will disappear gradually.
|
Received: 27 July 2020
Revised: 18 December 2020
Accepted manuscript online: 28 December 2020
|
PACS:
|
62.20.-x
|
(Mechanical properties of solids)
|
|
62.20.de
|
(Elastic moduli)
|
|
63.20.-e
|
(Phonons in crystal lattices)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874247 and U1530258), the National Key R&D Program of China (Grant No. 2017YFA0304500), the 111 Plan of China (Grant No. D18001), the Hundred Talent Program of the Shanxi Province (2018), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices of China (Grant Nos. KF201703 and KF201904). |
Corresponding Authors:
Bao-Tian Wang
E-mail: wangbt@ihep.ac.cn
|
Cite this article:
Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田) High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation 2021 Chin. Phys. B 30 056202
|
[1] Wang P, Zhang N C, Jiang C L, Liu F S, Liu Z T and Liu Q J 2020 Chin. Phys. B 29 076201 [2] Sun W W, Luo W, Feng Q G and Ahuja R 2017 Phys. Rev. B 95 115130 [3] Zhang C B, Li W D, Zhang P and Wang B T 2019 Comput. Mater. Sci. 157 121 [4] Duthie J C and Pettifor D G 1977 Phys. Rev. Lett. 38 564 [5] Skriver H L 1985 Phys. Rev. B 31 1909 [6] Tal A A, Katsnelson M I, Ekholm M, Jönsson H J M, Dubrovinsky L, Dubrovinskaia N and Abrikosov I A 2016 Phys. Rev. B 93 205150 [7] Tonkov E Y and Ponyatovsky E G 2005 Phase Transformation of Elements under High Pressure (Boca Raton, FL: CRC Press) [8] Qi X T, Wang X B, Chen T and Li B S 2016 J. Appl. Phys. 119 125109 [9] Xia H, Parthasarathy G, Luo H, Vohra Y K and Ruoff A L 1990 Phys. Rev. B 42 6736 [10] Hrubiak R 2012 Exploring Thermal and Mechanical Properties of Selected Transition Elements under Extreme Conditions: Experiments at High Pressures and High Temperatures (PhD Dissertation) (Florida International University) [11] Pandey K K, Gyanchandani J, Somayazulu M, Dey G K, Sharma S M and Sikka S K 2014 J. Appl. Phys. 115 233513 [12] Chen Q and Sundman B 2001 Acta Mater. 49 947 [13] Novoselov D, Anisimov V I and Ponosov Y S 2018 Phys. Rev. B 97 184108 [14] Ostanin S A and Trubitsin V Y 2000 Comput. Mater. Sci. 17 174 [15] Ahuja R, Wills J M, Johansson B and Eriksson O 1993 Phys. Rev. B 48 16269 [16] Bashkin I O, Nefedova M V, Tissen V G and Ponyatovsky E G 2004 JETP Lett. 80 655 [17] Gyanchandani J S, Gupta S C, Sikka S K and Chidambaram R 1990 J. Phys.: Condens. Matter 2 6457 [18] Ming L, Manghnani M H and Katahara K W 1981 J. Appl. Phys. 52 1332 [19] Tittman B, Hamilton D and Jayaraman A 1964 J. Appl. Phys. 35 732 [20] Degtyareva V F, Karimov Yu S and Rabinkin A G 1974 Sov. Phys.-Solid State (Engl. Transl.) 15 3436 [21] Bashkin I O, Tissen V G, Nefedova M.V and Ponyatovsky E G 2007 Physica C 453 12 [22] Heiniger F, Bucher E and Muller J 1966 Physik der kondensierten Materie 5 243 [23] Hamlin J J 2015 Physica C 514 59 [24] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [26] Giannozzi P, Baroni S and Bonini N et al. 2009 J. Phys.: Condens. Matter 21 395502 [27] Baroni S. Gironcoli De S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [28] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [29] McMillan W L 1968 Phys. Rev. 167 331 [30] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504 [31] Chung D H, Buessem W R, Vahldiek F W and Mersol S A 1968 Anisotropy in Single Crystal Refractory Compounds (New York: Plenum Press) [32] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891 [33] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner) [34] Reuss A 1929 J. Appl. Math. Mech. 9 49 [35] Hill R 1952 Proc. Phys. Soc. A 65 349 [36] Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525 [37] Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1 [38] Ozisik H B, Colakoglu K and Deligoz E 2012 Comput. Mater. Sci. 51 83 [39] Duan Y H, Wu Z Y, Huang B and Chen S 2015 Comput. Mater. Sci. 110 10 [40] Nye J F 1985 Physical Properties of Crystal: Their Represent by Tensors and Matrices (New York: Oxford University Press) [41] Sun L, Gao Y M, Xiao B, Li Y F and Wang G L 2013 J. Alloys Compd. 579 457 [42] Giustino F 2017 Rev. Mod. Phys. 89 015003 [43] Wang B T, Zhang P, Liu H Y, Li W D and Zhang P 2011 J. Appl. Phys. 109 063514 [44] Akahama Y, Kobayashi M and Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843 [45] Eichler A and Cey W 1972 Z. Physik 251 321 [46] Gao M, Li Q Z, Yan X W and Wang J 2017 Phys. Rev. B 95 024505 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|