Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 056202    DOI: 10.1088/1674-1056/abd6f6
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation

Cheng-Bin Zhang(张成斌)1,2,3, Wei-Dong Li(李卫东)1, Ping Zhang(张平)4, and Bao-Tian Wang(王保田)2,3,4,†
1 Institute of Theoretical Physics and Department of Physics, and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Spallation Neutron Source Science Center, Dongguan 523803, China;
4 LCP, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The elastic anisotropy and superconductivity upon hydrostatic compression of α, ω, and β Hf are investigated using first-principle methods. The results of elastic anisotropies show that they increase with increasing pressure for α and ω phases, while decrease upon compression for β phase. The calculated superconducting transition temperatures are in excellent agreement with experiments. Electron-phonon coupling constants (λ) are increasing with pressure for α and ω phases, while decreasing for β phase. For β phase, the large values of λ are mainly due to the obvious TA1 soft mode. Under further compression, the TA1 soft vibrational mode will disappear gradually.
Keywords:  first-principles      elastic anisotropy      superconductivity      hafnium  
Received:  27 July 2020      Revised:  18 December 2020      Accepted manuscript online:  28 December 2020
PACS:  62.20.-x (Mechanical properties of solids)  
  62.20.de (Elastic moduli)  
  63.20.-e (Phonons in crystal lattices)  
  74.70.-b (Superconducting materials other than cuprates)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874247 and U1530258), the National Key R&D Program of China (Grant No. 2017YFA0304500), the 111 Plan of China (Grant No. D18001), the Hundred Talent Program of the Shanxi Province (2018), and the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices of China (Grant Nos. KF201703 and KF201904).
Corresponding Authors:  Bao-Tian Wang     E-mail:  wangbt@ihep.ac.cn

Cite this article: 

Cheng-Bin Zhang(张成斌), Wei-Dong Li(李卫东), Ping Zhang(张平), and Bao-Tian Wang(王保田) High-pressure elastic anisotropy and superconductivity of hafnium: A first-principles calculation 2021 Chin. Phys. B 30 056202

[1] Wang P, Zhang N C, Jiang C L, Liu F S, Liu Z T and Liu Q J 2020 Chin. Phys. B 29 076201
[2] Sun W W, Luo W, Feng Q G and Ahuja R 2017 Phys. Rev. B 95 115130
[3] Zhang C B, Li W D, Zhang P and Wang B T 2019 Comput. Mater. Sci. 157 121
[4] Duthie J C and Pettifor D G 1977 Phys. Rev. Lett. 38 564
[5] Skriver H L 1985 Phys. Rev. B 31 1909
[6] Tal A A, Katsnelson M I, Ekholm M, Jönsson H J M, Dubrovinsky L, Dubrovinskaia N and Abrikosov I A 2016 Phys. Rev. B 93 205150
[7] Tonkov E Y and Ponyatovsky E G 2005 Phase Transformation of Elements under High Pressure (Boca Raton, FL: CRC Press)
[8] Qi X T, Wang X B, Chen T and Li B S 2016 J. Appl. Phys. 119 125109
[9] Xia H, Parthasarathy G, Luo H, Vohra Y K and Ruoff A L 1990 Phys. Rev. B 42 6736
[10] Hrubiak R 2012 Exploring Thermal and Mechanical Properties of Selected Transition Elements under Extreme Conditions: Experiments at High Pressures and High Temperatures (PhD Dissertation) (Florida International University)
[11] Pandey K K, Gyanchandani J, Somayazulu M, Dey G K, Sharma S M and Sikka S K 2014 J. Appl. Phys. 115 233513
[12] Chen Q and Sundman B 2001 Acta Mater. 49 947
[13] Novoselov D, Anisimov V I and Ponosov Y S 2018 Phys. Rev. B 97 184108
[14] Ostanin S A and Trubitsin V Y 2000 Comput. Mater. Sci. 17 174
[15] Ahuja R, Wills J M, Johansson B and Eriksson O 1993 Phys. Rev. B 48 16269
[16] Bashkin I O, Nefedova M V, Tissen V G and Ponyatovsky E G 2004 JETP Lett. 80 655
[17] Gyanchandani J S, Gupta S C, Sikka S K and Chidambaram R 1990 J. Phys.: Condens. Matter 2 6457
[18] Ming L, Manghnani M H and Katahara K W 1981 J. Appl. Phys. 52 1332
[19] Tittman B, Hamilton D and Jayaraman A 1964 J. Appl. Phys. 35 732
[20] Degtyareva V F, Karimov Yu S and Rabinkin A G 1974 Sov. Phys.-Solid State (Engl. Transl.) 15 3436
[21] Bashkin I O, Tissen V G, Nefedova M.V and Ponyatovsky E G 2007 Physica C 453 12
[22] Heiniger F, Bucher E and Muller J 1966 Physik der kondensierten Materie 5 243
[23] Hamlin J J 2015 Physica C 514 59
[24] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Giannozzi P, Baroni S and Bonini N et al. 2009 J. Phys.: Condens. Matter 21 395502
[27] Baroni S. Gironcoli De S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[28] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905
[29] McMillan W L 1968 Phys. Rev. 167 331
[30] Ranganathan S I and Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504
[31] Chung D H, Buessem W R, Vahldiek F W and Mersol S A 1968 Anisotropy in Single Crystal Refractory Compounds (New York: Plenum Press)
[32] Ravindran P, Fast L, Korzhavyi P A, Johansson B, Wills J and Eriksson O 1998 J. Appl. Phys. 84 4891
[33] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner)
[34] Reuss A 1929 J. Appl. Math. Mech. 9 49
[35] Hill R 1952 Proc. Phys. Soc. A 65 349
[36] Watt J P and Peselnick L 1980 J. Appl. Phys. 51 1525
[37] Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
[38] Ozisik H B, Colakoglu K and Deligoz E 2012 Comput. Mater. Sci. 51 83
[39] Duan Y H, Wu Z Y, Huang B and Chen S 2015 Comput. Mater. Sci. 110 10
[40] Nye J F 1985 Physical Properties of Crystal: Their Represent by Tensors and Matrices (New York: Oxford University Press)
[41] Sun L, Gao Y M, Xiao B, Li Y F and Wang G L 2013 J. Alloys Compd. 579 457
[42] Giustino F 2017 Rev. Mod. Phys. 89 015003
[43] Wang B T, Zhang P, Liu H Y, Li W D and Zhang P 2011 J. Appl. Phys. 109 063514
[44] Akahama Y, Kobayashi M and Kawamura H 1990 J. Phys. Soc. Jpn. 59 3843
[45] Eichler A and Cey W 1972 Z. Physik 251 321
[46] Gao M, Li Q Z, Yan X W and Wang J 2017 Phys. Rev. B 95 024505
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[4] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[5] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[8] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[11] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[12] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[13] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[14] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[15] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
No Suggested Reading articles found!