Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 028102    DOI: 10.1088/1674-1056/21/2/028102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm

Li Xin-Kun(李新坤), Liang De-Chun(梁德春), Jin Peng(金鹏), An Qi(安琪), Wei Heng(魏恒), Wu Jian(吴剑), and Wang Zhan-Guo(王占国)
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  According to the InAs/GaAs submonolayer quantum dot active region, we demonstrate a bent-waveguide superluminescent diode emitting at a wavelength of around 970 nm. At a pulsed injection current of 0.5 A, the device exhibits an output power of 24 mW and an emission spectrum centred at 971 nm with a full width at half maximum of 16 nm.
Keywords:  quantum dot      submonolayer      self-assembled      superluminescent diode  
Received:  19 September 2011      Revised:  19 October 2011      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  81.16.Dn (Self-assembly)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.60.Jb (Light-emitting devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2006CB604904) and the National Natural Science Foundation of China (Grant Nos. 60876086, 60976057, and 60776037).
Corresponding Authors:  Jin Peng,pengjin@semi.ac.cn     E-mail:  pengjin@semi.ac.cn

Cite this article: 

Li Xin-Kun(李新坤), Liang De-Chun(梁德春), Jin Peng(金鹏), An Qi(安琪), Wei Heng(魏恒), Wu Jian(吴剑), and Wang Zhan-Guo(王占国) InAs/GaAs submonolayer quantum dot superluminescent diode emitting around 970 nm 2012 Chin. Phys. B 21 028102

[1] Schmitt J M 1999 IEEE J. Sel. Topics Quantum Electron. 5 1205
[2] Zotter S, Pircher M, Torzicky T, Bonesi M, Götzinger E, Leitgeb R A and Hitzenberger C K 2011 Opt. Express 19 1217
[3] Wang K, Zeng Y, Ding Z H, Meng J, Shi G H and Zhang Y D 2010 Acta Phys. Sin. 59 2471 (in Chinese)
[4] Liang Y M, Zhou D C, Meng F Y and Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)
[5] Lee B 2003 Opt. Fiber Technol. 9 57
[6] Lü X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916
[7] Lü X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[8] Wu J, L? X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[9] Sun Z Z, Ding D, Gong Q, Zhou W, Xu B and Wang Z G 1999 Opt. Quantum Electron. 31 1235
[10] Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
[11] Yoo Y C, Han I K and Lee J I 2007 Electron. Lett. 43 1045
[12] Zhang Z Y, Luxmoore I J, Jin C Y, Liu H Y, Jiang Q, Groom K M, Childs D T, Hopkinson M, Cullis A G and Hogg R A 2007 Appl. Phys. Lett. 91 081112
[13] Lü X Q, Liu N, Jin P and Wang Z G 2008 IEEE Photon. Technol. Lett. 20 1742
[14] Haffouz S, Rodermans M, Barrios P J, Lapointe J, Raymond S, Lu Z and Poitras D 2010 Electron. Lett. 46 1144
[15] Zhang Z Y, Hogg R A, L? X Q and Wang Z G 2010 Adv. Opt. Photon. 2 201
[16] Brezinski M E and Fujimoto J G 1999 IEEE J. Sel. Top. Quantum Electron. 5 1185
[17] Hinzer K, Lapointe J, Feng Y, Del^age A, Fafard S, SpringThorpe A J and Griswold E M 2000 J. Appl. Phys. 87 1496
[18] Schlereth T W, Schnerder C, Höfling S and Forchel A 2008 Nanotechnology 19 045601
[19] Kovsh A R, Zhukov A E, Maleev N A, Mikhrin S S, Livshits D A, Shernyakov Y M, Maximov M V, Pihtin N A, Tarasov I S, Ustinov V M, Alferov Zh I, Wang J S, Wei L, Lin G, Chi J Y, Ledentsov N N and Bimberg D 2003 Microelectron. J. 34 491
[20] Zhukov A E, Kovsh A R, Mikhrin S S, Maleev N A, Ustinov V M, Livshits D A, Tarasov I S, Bedarev D A, Maximov M V, Tsatsul'nikov A F, Soshnikov I P, Kop関 P S, Alferov Zh I, Ledetsov N N and Bimberg D 1999 Electron. Lett. 35 1845
[21] Xu Z C, Birkedal D, Juhl M and Hvam J M 2004 Appl. Phys. Lett. 85 3259
[22] Hopfer F, Mutig A, Kuntz M, Fiol G, Bimberg D, Ledentsov N N, Shchukin V A, Mikhrin S S, Livshits D L, Krestnikov I L, Kovsh A R, Zakharov N D and Werner P 2006 Appl. Phys. Lett. 89 141106
[23] Liang D C, An Q, Jin P, Li X K, Wei H, Wu J and Wang Z G 2011 Chin. Phys. B 20 108503
[24] Schäfer F, Reithmaier J P and Forchel A 1999 Appl. Phys. Lett. 74 2915
[25] Klopf F, Reithmaier J P and Forchel A 2001 J. Cryst. Growth 227-228 1151
[26] Xu Z C, Birkedal D, Hvam J M, Zhao Z Y, Liu Y M, Yang K T, Kanjilal A and Sadowski J 2003 Appl. Phys. Lett. 82 3859
[27] Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2005 Electron. Lett. 41 41
[28] Ray S K, Choi T L, Groom K M, Stevens B J, Liu H Y, Hopkinson M and Hogg R A 2007 IEEE J. Sel. Top. Quantum Electron. 13 1267
[29] Wu B R, Lin C F, Laih L W and Shih T T 2000 Electron. Lett. 36 2093
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[13] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[14] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!