Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017302    DOI: 10.1088/1674-1056/21/1/017302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Quantum computation with two-dimensional graphene quantum dots

Li Jie-Sen(李杰森), Li Zhi-Bing (李志兵), and Yao Dao-Xin (姚道新)
State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou 510275, China
Abstract  We study an array of graphene nano sheets that form a two-dimensional S=1/2 Kagome spin lattice used for quantum computation. The edge states of the graphene nano sheets are used to form quantum dots to confine electrons and perform the computation. We propose two schemes of bang-bang control to combat decoherence and realize gate operations on this array of quantum dots. It is shown that both schemes contain a great amount of information for quantum computation. The corresponding gate operations are also proposed.
Keywords:  graphene      quantum dot      quantum computation      Kagome lattice  
Received:  06 April 2011      Revised:  14 September 2011      Accepted manuscript online: 
PACS:  73.22.Pr (Electronic structure of graphene)  
  73.21.La (Quantum dots)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074310), the National Basic Research Program of China (Grant No. 2007CB935501), and Fundamental Research Funds for the Central Universities of China.

Cite this article: 

Li Jie-Sen(李杰森), Li Zhi-Bing (李志兵), and Yao Dao-Xin (姚道新) Quantum computation with two-dimensional graphene quantum dots 2012 Chin. Phys. B 21 017302

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Gregorieva I V and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[3] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Geim A K and Novoselov K S 2007 Nature Materials 6 183
[5] Wang S, Ang P K, Wang Z, Tang A L L, Thong J T L and Loh K P 2010 Nano Lett. 10 92
[6] Lee C, Wei X D, Kysar J W and Hone J 2008 Science 321 385
[7] Frank I W, Tanenbaum D M, van der Zande A M and McEuen P L 2007 J. Vac. Sci. Technol. B 25 2558
[8] Shao Y Y, Wang J, Wu H, Liu J, Aksay I A and Lina Y 2010 Electroanalysis 22 1027
[9] Yang W, Ratinac K R, Ringer S P, Thordarson P, Gooding J J and Braet F 2010 Angew. Chem. Int. Ed. 49 2114
[10] Wallace P R 1947 Phys. Rev. 71 622
[11] Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C and Gao H J 2010 Chin. Phys. B 19 037202
[12] Li Q, Cheng Z G, Li Z J, Wang Z H and Fang Y 2010 Chin. Phys. B 19 097307
[13] Xu X G, Zhang C, Xu G J and Cao J C 2011 Chin. Phys. B 20 027201
[14] Nakada K and Fujita M 1996 Phys. Rev. B 54 17954
[15] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[16] Barone V, Hod O and Scuseria G E 2006 Nano Lett. 6 2748
[17] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[18] Guo G P, Lin Z R, Tu T, Gao G, Li X P and Guo G C 2009 New J. Phys. 11 123005
[19] Wang L J, Cao G, Tu T, Li H O, Zhou C, Hao X J, Su Z, Guo G C, Jiang H W and Guo G P 2010 Appl. Phys. Lett. 97 262113
[20] Li G Q and Cai J 2009 Acta Phys. Sin. 58 6453 (in Chinese)
[21] Rech S, Maultzsch J and Thomsen C 2002 Phys. Rev. B 66 035412
[22] Hu H X, Zhang Z H, Liu X H, Qiu M and Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese)
[23] Yazyev O V 2008 Phys. Rev. Lett. 101 037203
[24] Saito R, Dresselhaus G and Dresselhaus M S 1998 Physical Properties of Carbon Nanotube (London: Imperial College Press)
[25] Fischer J, Trauzettel B and Loss D 2009 Phys. Rev. B 80 155401
[26] Zhang Y, Zhou Z W, Yu B and Guo G C 2004 Phys. Rev. A 69 042315
[27] Bennett C H and DiVincenzo D P 2000 Nature 404 247
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[3] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[7] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[8] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[9] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[10] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[11] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[12] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[13] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[14] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[15] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
No Suggested Reading articles found!