Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017303    DOI: 10.1088/1674-1056/21/1/017303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Analysis and simulation of a 4H-SiC semi-superjunction Schottky barrier diode for softer reverse-recovery

Cao Lin(曹琳), Pu Hong-Bin(蒲红斌), Chen Zhi-Ming(陈治明), and Zang Yuan(臧源)
Department of Electronic Engineering, Xián University of Technology, Xián 710048, China
Abstract  In this paper, a 4H-SiC semi-superjunction (SJ) Schottky barrier diode is analysed and simulated. The semi-SJ structure has an optimized design and a specific on-resistance lower than that of conventional SJ structures, which can be achieved without increasing the process difficulty. The simulation results show that the specific on-resistance and the softness factor depend on the aspect and thickness ratios, and that by using the semi-SJ structure, specific on-resistance can be reduced without decreasing the softness factor. It is observed that a trade-off exists between the specific on-resistance and the softness of the diode.
Keywords:  4H-SiC      semi-superjunction      Schottky barrier diode      softness factor  
Received:  24 March 2011      Revised:  05 May 2011      Accepted manuscript online: 
PACS:  73.30.+y (Surface double layers, Schottky barriers, and work functions)  
  73.40.Sx (Metal-semiconductor-metal structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60876050) and the Research Fund for Excellent Doctor Degree Thesis of Xi’an University of Technology, China.

Cite this article: 

Cao Lin(曹琳), Pu Hong-Bin(蒲红斌), Chen Zhi-Ming(陈治明), and Zang Yuan(臧源) Analysis and simulation of a 4H-SiC semi-superjunction Schottky barrier diode for softer reverse-recovery 2012 Chin. Phys. B 21 017303

[1] Wu S Y and Campbell R B 1974 Solid State Electron. 17 638
[2] ZHAO J H, Alexandrov P and Li X 2003 Electron Device Lett. 24 402
[3] Wu J, Furisin L, Li Y, Alexandrov P and Zhao J H 2004 Mat. Sci. Forum 457 1109
[4] Strollo A G M and Napoli E 2001 Microelectronics J. 32 491
[5] Park Y, Andre C and Salama T 2006 IEEE Trans. Electron Devices 53 8
[6] Yu L C and Sheng K 2006 Solid State Electron. 50 1062
[7] Zhu L, Losee P and Chow T P 2004 Int. J. High Speed Electron. Sys. 14 865
[8] Yu L C and Sheng K 2008 IEEE Trans. Electron Devices 55 1961
[9] Antoniou M, Udrea F, Bauer F and Nistor I 2010 IEEE Trans. Electron Devices 31 591
[10] Saito W, Omura I, Aida S, Koduki S, Izumisawa M, Yoshioka H and Ogura T 2005 IEEE Trans. Electron Devices 52 2317
[11] Yang Y T, Geng Z H, Duan B X, Jia H J, Yu C and Ren L L 2010 Acta Phys. Sin. 59 566 (in Chinese)
[12] Chen X B and Sin J K O 2001 IEEE Trans. Electron Devices 48 344
[13] Fujihira T 1997 Jap. J. Appl. Phys. 36 6254
[14] Palo A 1998 MEDICI Two-Dimensional Device Simulation Programmer User Manual (1st Edn.) (Fremont: Avant) p. 1
[15] Mayaram K, Tien B, Hu C M and Donald O 1988 Proc. IEDM88 December 11-14, 1988 San Francisco, USA, p. 622
[16] Ng R, Udrea F, Sheng K and Amaratunga 2001 the 24th International Semiconductor Conference, October 17-19, 2001 Sinaia, Romania, p. 461
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[3] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[4] Hybrid-anode structure designed for a high-performance quasi-vertical GaN Schottky barrier diode
Qiliang Wang(王启亮), Tingting Wang(王婷婷), Taofei Pu(蒲涛飞), Shaoheng Cheng(成绍恒),Xiaobo Li(李小波), Liuan Li(李柳暗), and Jinping Ao(敖金平). Chin. Phys. B, 2022, 31(5): 057702.
[5] Theoretical study on the improvement of the doping efficiency of Al in 4H-SiC by co-doping group-IVB elements
Yuanchao Huang(黄渊超), Rong Wang(王蓉), Yixiao Qian(钱怡潇), Yiqiang Zhang(张懿强), Deren Yang(杨德仁), and Xiaodong Pi(皮孝东). Chin. Phys. B, 2022, 31(4): 046104.
[6] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[7] A 4H-SiC merged P-I-N Schottky with floating back-to-back diode
Wei-Zhong Chen(陈伟中), Hai-Feng Qin(秦海峰), Feng Xu(许峰), Li-Xiang Wang(王礼祥), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(2): 028503.
[8] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[9] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[10] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[11] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[12] Degradation of β-Ga2O3 Schottky barrier diode under swift heavy ion irradiation
Wen-Si Ai(艾文思), Jie Liu(刘杰), Qian Feng(冯倩), Peng-Fei Zhai(翟鹏飞), Pei-Pei Hu(胡培培), Jian Zeng(曾健), Sheng-Xia Zhang(张胜霞), Zong-Zhen Li(李宗臻), Li Liu(刘丽), Xiao-Yu Yan(闫晓宇), and You-Mei Sun(孙友梅). Chin. Phys. B, 2021, 30(5): 056110.
[13] Characteristics and mechanisms of subthreshold voltage hysteresis in 4H-SiC MOSFETs
Xi-Ming Chen(陈喜明), Bang-Bing Shi(石帮兵), Xuan Li(李轩), Huai-Yun Fan(范怀云), Chen-Zhan Li(李诚瞻), Xiao-Chuan Deng(邓小川), Hai-Hui Luo(罗海辉), Yu-Dong Wu(吴煜东), and Bo Zhang(张波). Chin. Phys. B, 2021, 30(4): 048504.
[14] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[15] Lateral depletion-mode 4H-SiC n-channel junction field-effect transistors operational at 400 °C
Si-Cheng Liu(刘思成), Xiao-Yan Tang(汤晓燕), Qing-Wen Song(宋庆文), Hao Yuan(袁昊), Yi-Meng Zhang(张艺蒙), Yi-Men Zhang(张义门), and Yu-Ming Zhang(张玉明). Chin. Phys. B, 2021, 30(2): 028503.
No Suggested Reading articles found!