Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(8): 083401    DOI: 10.1088/1674-1056/20/8/083401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Quasi-classical trajectory study of the stereodynamics of a Ne+H2+→NeH++H reaction

Ge Mei-Hua(葛美华) and Zheng Yu-Jun(郑雨军)
School of Physics, Shandong University, Jinan 250100, China
Abstract  We have carried out a quasi-classical trajectory calculation for the reaction of ${\rm Ne + H_2^+}$ ($\nu=0$, $j=1$) $\to \,{\rm  NeH^+ + H}$ on the ground state (1$^2$A$'$) using the LZHH potential energy surface  constructed by L$\ddot{\rm u}$ et al. [L$\ddot{\rm u}$ S J, Zhang P Y, Han K L and He G Z  2010 J. Chem. Phys. 132 014303]. Differential cross sections at many collision energies indicate that the reaction is dominated by  forward-scattering. In addition, the NeH$^+$ product shows rotationally hot and vibrationally cold distributions. Stereodynamical results indicate that the products are strongly polarized in the direction perpendicular to the  scattering plane and that the products rotate mainly in planes parallel to the scattering plane.
Keywords:  quasi-classical trajectory      stereodynamics      product vibrational distribution      product rotational distribution  
Received:  19 February 2011      Revised:  21 March 2011      Accepted manuscript online: 
PACS:  34.50.Lf (Chemical reactions)  
  82.20.Kh (Potential energy surfaces for chemical reactions)  
  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 21073110) and the Independent Innovation Foundation of Shandong University of China (Grant No. 10000059614011).

Cite this article: 

Ge Mei-Hua(葛美华) and Zheng Yu-Jun(郑雨军) Quasi-classical trajectory study of the stereodynamics of a Ne+H2+→NeH++H reaction 2011 Chin. Phys. B 20 083401

[1] Chu T S and Han K L 2008 Phys. Chem. Chem. Phys. 10 2431
[2] Chu T S, Zhang Y and Han K L 2006 Int. Rev. Phys. Chem. 25 201
[3] Dressler R A, Chiu Y, Levandier D J, Tang X N, Hou Y, Chang C, Houchins C, Xu H and Ng C Y 2006 J. Chem. Phys. 125 132306
[4] Zhang T, Qian X M, Tang X N, Ng C Y, Chiu Y, Levandier D J, Miller J S and Dressler R A 2003 J. Chem. Phys. 119 10175, and references therein
[5] Herman Z and Koyano I 1987 J. Chem. Soc. Faraday Trans. 83 127
[6] Van Pijkeren D, Boltjes E, Eck J V and Niehaus A 1984 Chem. Phys. 91 293
[7] Bilotta R M and Farrar J M 1981 J. Chem. Phys. 75 1776
[8] Lü S J, Zhang P Y, Han K L and He G Z 2010 J. Chem. Phys. 132 014303
[9] Mayneris J, Sierra J D and Gonz'alez M 2008 J. Chem. Phys. 128 194307
[10] Huarte-Larra naga F, Giménez X, Lucas J M, Aguilar A and Launay J M 2000 J. Phys. Chem. A 104 10227
[11] Huarte-Larra naga F, Giménez X, Lucas J M, Aguilar A and Launay J M 1999 Phys. Chem. Chem. Phys. 1 1125
[12] Gilibert M, Giménez X, Huarte-Larra naga F, Gonz'alez M, Aguilar A, Last I and Baer M 1999 J. Chem. Phys. 110 6278
[13] Gilibert M, Blasco R M, Gonz'alez M, Giménez X, Aguilar A, Last I and Baer M 1997 J. Phys. Chem. A 101 6821
[14] Kress J D, Walker R B, Hayes E F and Pendergast P 1994 J. Chem. Phys. 100 2728
[15] Pendergast P, Heck J M, Hayes E F and Jaquet R 1993 J. Chem. Phys. 98 4543, and references therein
[16] Urban J, Klimo V, Staemmler V and Jaquet R 1991 Z. Phys. D: At. Mol. Clusters 21 329
[17] Urban J, Jaquet R and Staemmler V 1990 Int. J. Quantum Chem. 38 339
[18] Hayes E F, Siu A K Q, Chapman F M and Matcha R L 1976 J. Chem. Phys. 65 1901
[19] Kuntz P J and Roach A C 1972 J. Chem. Soc. Faraday Trans. 68 259
[20] Polanyi J C and Wong W H 1969 J. Chem. Phys. 51 1439
[21] Zhang X and Han K L 2006 Int. Quantum Chem. 106 1815
[22] Li R J, Han K L, Li F E, Lu R C, He G Z and Lou N Q 1994 Chem. Phys. Lett. 220 281
[23] Han K L, He G Z and Lou N Q 1996 J. Chem. Phys. 105 8699, and references therein
[24] Han K L, Zheng X G, Sun B F, He G Z and Zhang R Q 1991 Chem. Phys. Lett. 181 474
[25] Liu S L and Shi Y 2011 Chin. Phys. B 20 013404
[26] Han B R, Zong F J, Wang C L, Ma W Y and Zhou J H 2010 Chem. Phys. 374 94
[27] Ge M H and Zheng Y J 2011 Theor. Chem. Acc. 129 173
[28] Kong H, Liu X G, Xu W W, Liang J J and Zhang Q G 2009 Acta Phys. Sin. 58 6926 (in Chinese)
[29] Xu Y, Zhao J, Yue D G, Zheng X Y and Meng Q T 2009 Chin. Phys. B 18 5308
[30] Zhao J, Xu Y and Meng Q T 2010 Chin. Phys. B 19 063403
[31] Hartree W S, Simons J P and Gonzalez-Urena A 1990 J. Chem. Soc. Faraday Trans. 86 17
[32] Prisant M G, Rettner C T and Zare R N 1984 J. Chem. Phys. 81 2699
[33] Chu T S 2010 J. Comput. Chem. 31 1385
[34] Li B and Han K L 2009 J. Phys. Chem. A 113 10189
[35] Ju L P, Han K L and Zhang J Z H 2009 J. Comput. Chem. 30 305
[36] Varandas A J C 2000 Int. Rev. Phys. Chem. 19 199
[1] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[2] Quasi-classical trajectory study of H+LiH (v=0, 1, 2, j=0)→Li+H2 reaction on a new global potential energy surface
Yu-Liang Wang(王玉良), De-Zhi Su(宿德志), Cun-Hai Liu(刘存海), Hui Li(李慧). Chin. Phys. B, 2019, 28(8): 083402.
[3] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[4] Dynamics of the CH4+O(3P)→CH3(ν=0)+OH(ν'=0) reaction
Zhong-An Jiang(蒋仲安), Ya Peng(彭亚), Ju-Shi Chen(陈举师), Gui Lan(兰桂), Hao-Yu Lin(林浩宇). Chin. Phys. B, 2018, 27(6): 063401.
[5] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[6] Effects of collision energy and rotational quantum number on stereodynamics of the reactions: H(2S)+NH(v=0, j=0, 2, 5, 10)→N(4S)+H2
Wei Wang(王伟), Yong-Jiang Yu(于永江), Gang Zhao(赵刚), Chuan-Lu Yang(杨传路). Chin. Phys. B, 2016, 25(8): 083402.
[7] Energy and rotation-dependent stereodynamics of H(2S) + NH(a1Δ)→H2(X1Σg+) + N(2D) reaction
Yong-Qing Li(李永庆), Yun-Fan Yang(杨云帆), Yang Yu(于洋), Yong-jia Zhang(张永嘉), Feng-Cai Ma(马凤才). Chin. Phys. B, 2016, 25(2): 023401.
[8] Stereodynamics of the reactions: F+H2/HD/HT→FH+H/D/T
Chi Xiao-Lin (迟晓琳), Zhao Jin-Feng (赵金峰), Zhang Yong-Jia (张永嘉), Ma Feng-Cai (马凤才), Li Yong-Qing (李永庆). Chin. Phys. B, 2015, 24(5): 053401.
[9] Quasi-classical trajectory study of collision energy effect on the stereodynamics of H + BrO→O + HBr reaction
Xie Ting-Xian (解廷献), Zhang Ying-Ying (张莹莹), Shi Ying (石英), Li Ze-Rui (李泽瑞), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(4): 043402.
[10] Theoretical prediction of energy dependence for D+BrO→DBr+O reaction: The rate constant and product rotational polarization
Zhang Ying-Ying (张莹莹), Xie Ting-Xian (解廷献), Li Ze-Rui (李泽瑞), Shi Ying (石英), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(3): 038201.
[11] Vector correlations study of the reaction N(2D)+ H2(X1Σg+)→NH(a1Δ)+ H(2S) with different collision energies and reagent vibration excitations
Li Yong-Qing (李永庆), Zhang Yong-Jia (张永嘉), Zhao Jin-Feng (赵金峰), Zhao Mei-Yu (赵美玉), Ding Yong (丁勇). Chin. Phys. B, 2015, 24(11): 113402.
[12] Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S(3P) + H2→SH + H
Shan Guang-Ling (单广玲), Wang Mei-Shan (王美山), Yang Chuan-Lu (杨传路), Li Yan-Qing (李艳青). Chin. Phys. B, 2014, 23(6): 068201.
[13] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui (王允辉), Xiao Chuan-Yun (肖传云), Deng Kai-Ming (邓开明), Lu Rui-Feng (陆瑞锋). Chin. Phys. B, 2014, 23(4): 043401.
[14] Stereodynamics study of the H’(2S)+NH(X3-→N(4S) +H2 reaction
Wei Qiang (魏强). Chin. Phys. B, 2014, 23(2): 023401.
[15] Quasi-classical trajectory investigation on the stereodynamics of Li+DF (v=1-6, j=0)→LiF+D reaction
Zhang Ying-Ying (张莹莹), Li Shu-Juan (李淑娟), Shi Ying (石英), Xie Ting-Xian (解廷献), Jin Ming-Xing (金明星). Chin. Phys. B, 2014, 23(12): 123402.
No Suggested Reading articles found!