Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047502    DOI: 10.1088/1674-1056/20/4/047502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Determination of the magnetocaloric effect associated with martensitic transition in Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloys

Li Zhe(李哲),Jing Chao(敬超),Zhang Hao-Lei(张浩雷), Cao Shi-Xun(曹世勋),and Zhang Jin-Cang(张金仓)
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  This paper presents a study of the inverse magnetocaloric effect (MCE) corresponding to martensitic transition using various experimental approaches for Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloy. Through heat capacity measurements, it is found that the "giant inverse MCE" upon martensitic transition evaluated by the Maxwell relation in these alloys are unphysical results. This is due to the coexistence of both martensitic and austenitic phases, as well as thermal hysteresis during martensitic transition. However, careful study indicates that the spurious results during martensitic transition can be removed using a Clausius-Clapeyron equation based on magnetization measurements.
Keywords:  Heusler alloy      martensitic transition      magnetocaloric effect  
Received:  31 July 2010      Revised:  06 November 2010      Accepted manuscript online: 
PACS:  75.50.Cc (Other ferromagnetic metals and alloys)  
  81.30.Kf (Martensitic transformations)  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
Fund: Project supported by the Science Foundation of Surface Physics Laboratory (National Key Laboratory) of Fudan University (Grant No. FDS2008-B01), the Graduate Innovation Foundation of Shanghai University (Grant Nos. SHUCX101065 and SHUCX102011) and the National Natural Science Foundation of China (Grant Nos. 50932003 and 10804068).

Cite this article: 

Li Zhe(李哲),Jing Chao(敬超),Zhang Hao-Lei(张浩雷), Cao Shi-Xun(曹世勋),and Zhang Jin-Cang(张金仓) Determination of the magnetocaloric effect associated with martensitic transition in Ni46Cu4Mn38Sn12 and Ni50CoMn34In15 Heusler alloys 2011 Chin. Phys. B 20 047502

[1] Pecharsky V K and Gschneidner K A Jr 1997 Phys. Rev. Lett. 78 4494
[2] Tishin A M and Spichkin Y 2003 The Magnetocaloric Effect and Its Applications (Bristol: IOP Publishing Ltd) p. 4
[3] Shen B G, Sun J R, Hu F X, Zhang H W and Cheng Z H 2009 Adv. Mater. 21 4545
[4] Pecharsky V K and Gschneidner K A Jr 1999 J. Appl. Phys. 86 6315
[5] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K and Oikawa K 2004 Appl. Phys. Lett. 85 4358
[6] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2005 Nature Mater. 4 450
[7] Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X and Du Y W 2006 it Appl. Phys. Lett. 89 182507
[8] Nayak A K, Suresh K G and Nigam A K 2009 J. Phys. D: Appl. Phys. 42 035009
[9] Jing C, Li Z, Chen J P, Lu Y M, Cao S X and Zhang J C 2008 Acta Phys. Sin. bf57 3780 (in Chinese)
[10] Jing C, Chen J P, Li Z, Cao S X and Zhang J C 2008 Acta Phys. Sin. bf57 4450 (in Chinese)
[11] Jing C, Li Z, Zhang H L, Chen J P, Qiao Y F, Cao S X and Zhang J C 2009 Euro. Phys. J. B 67 193
[12] Tocado L, Palacios E and Burriel R 2009 J. Appl. Phys. 105 093918
[13] Balli M, Fruchart D, Gignoux D and Zach R 2009 Appl. Phys. Lett. 95 072509
[14] Zou J D, Shen B G, Gao B, Shen J and Sun J R 2009 Adv. Mater. 21 693
[15] Ma nosa L, Planes A and Moya X 2009 Adv. Mater. 21 3725
[16] Zou J D, Shen B G, Gao B, Shen J and Sun J R 2009 Adv. Mater. 21 3727
[17] Krenke T, Acet M, Wassermann E F, Moya X, Ma nosa L and Planes A 2005 Phys. Rev. B 72 014412
[18] Li Z, Jing C, Chen J P, Yuan S J, Cao S X and Zhang J C 2007 it Appl. Phys. Lett. 91 112505
[19] Arrot A 1957 Phys. Rev. 108 1394
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[5] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[6] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[7] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[8] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[9] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[10] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[11] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[12] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[13] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[14] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[15] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
No Suggested Reading articles found!