Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037304    DOI: 10.1088/1674-1056/20/3/037304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Photoelectric property of LaAlO3-δ/Si heterojunctions with different oxygen contents

Xing Jie(邢杰)a)†, Guo Er-Jia(郭尔佳)b), and Wen Juan(温娟)b)
a School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China; b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Three oxide heterojunctions made of LaAlO3-δ/Si are fabricated under various oxygen pressures by laser molecular-beam epitaxy. They all show nonlinear and rectifying current–voltage characteristics, and the distinct difference in rectification behaviour among them. Their photoelectric properties are examined by a visible HeNe laser and an ultraviolet Hg lamp. We find that their photovoltaic responses are closely related to the oxygen contents in the LaAlO3-δ films. The junction fabricated under the lower oxygen pressure has a higher photovoltaic sensitivity. The possible mechanism is suggested based on the band structure of the p–n heterojunction.
Keywords:  photoelectric      heterojunction      film  
Received:  23 August 2010      Revised:  21 November 2010      Accepted manuscript online: 
PACS:  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  75.30.Gr  
  73.50.Pz (Photoconduction and photovoltaic effects)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant No. 2010ZY50), and the Science and Technology Foundation for Young Teachers of China University of Geosciences (Beijing, China) (Grant No. 51900961132).

Cite this article: 

Xing Jie(邢杰), Guo Er-Jia(郭尔佳), and Wen Juan(温娟) Photoelectric property of LaAlO3-δ/Si heterojunctions with different oxygen contents 2011 Chin. Phys. B 20 037304

[1] Chang W, Horwitz J S, Carter A C, Pond J M Kirchoefer S W, Gilmore C M and Chrisey D B 1999 Appl. Phys. Lett. 74 1033
[2] Ahn C H, Rabe K M and Triscone J M 2004 Science 303 488
[3] Lu H B, Dai S Y, Chen Z H, Zhou Y L, Cheng B L, Jin K J, Liu L F and Yang G Z 2005 Appl. Phys. Lett. 86 032502
[4] Mitra C Raychaudhuri P, Dorr K, Muller K H, Schultz L, Oppeneer P M and Wirth S 2003 Phys. Rev. Lett. 90 017202
[5] Ohtomo A and Hwang H Y 2004 Nature 427 423
[6] Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L and Wang N L 2008 Phys. Rev. Lett. 100 247002
[7] Zhao K, Huang Y H, Lu H B, He M, Jin K J, Chen Z H, Zhou Y L, Dai S Y and Yang G Z 2005 Chin. Phys. 14 420
[8] Jin K J, Lu H B, Zhou Q L, Zhao K, Cheng B L, Chen Z H, Zhou Y L and Yang G Z 2005 Phys. Rev. B 71 184428
[9] Yang F, Jin K J, Lu H B, He M, Wang C, Wen J and Yang G Z 2010 Sci. China Ser. G-Phys. Mech. Astron. 53 852
[10] Sun J R, Yeung C F, Zhao K, Zhou L Z, Leung C H, Wong H K and Shen B G 2000 Appl. Phys. Lett. 76 1164
[11] Sun J R, Lai C H and Wong H K 2004 Appl. Phys. Lett. 85 38
[12] Xing J, Jin K J, Lu H B, He M, Liu G Z, Qiu J and Yang G Z 2008 Appl. Phys. Lett. 92 071113
[13] Yan L, Lu H B, Tan G T, Chen F, Zhou Y L, Yang G Z, Liu W and Chen Z H 2003 Appl. Phys. A 77 721
[14] Xiang W F, Lu H B, Yan L, Guo H Z, Liu L F, Zhou Y L and Yang G Z 2003 J. Appl. Phys. 93 533
[15] Huang Y H, Zhao K, Lu H B, Jin K J, He M, Chen Z H, Zhou Y L and Yang G Z 2006 Physica B 373 313
[16] Wen J, Guo H Z, Xing J, Lu H B, Jin K J, He M and Yang G Z 2010 Science in China series G: Physics Mechanics and Astronomy 53 2080
[17] Sze S M 1999 Physics of Semiconductor Device (New York: Wiley)
[18] Wen J, Jin K J, He M, Lu H B, Yang F and Yang G Z 2009 Appl. Phys. Lett. 94 061118
[19] Han P, Jin K J, Lu H B, Zhou Q L, Zhou Y L and Yang G Z 2007 Appl. Phys. Lett. 91 182102 endfootnotesize
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[3] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[4] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[5] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[6] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[7] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[8] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[9] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[10] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[11] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[12] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[13] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[14] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[15] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
No Suggested Reading articles found!