Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 028501    DOI: 10.1088/1674-1056/20/2/028501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Ultra-low on-resistance high voltage (>600 V) SOI MOSFET with a reduced cell pitch

Luo Xiao-Rong(罗小蓉)a),Yao Guo-Liang(姚国亮)a),Chen Xi(陈曦)a), Wang Qi(王琦)a),Ge Rui(葛瑞)a),and Florin Udreab)
a State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China; b Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
Abstract  A low specific on-resistance (RS,on) silicon-on-insulator (SOI) trench MOSFET (metal–oxide–semiconductor–field–effect–transistor) with a reduced cell pitch is proposed. The lateral MOSFET features multiple trenches: two oxide trenches in the drift region and a trench gate extended to the buried oxide (BOX) (SOI MT MOSFET). Firstly, the oxide trenches increase the average electric field strength along the x direction due to lower permittivity of oxide compared with that of Si; secondly, the oxide trenches cause multiple-directional depletion, which improves the electric field distribution and enhances the reduced surface field (RESURF) effect in the SOI layer. Both of them result in a high breakdown voltage (BV). Thirdly, the oxide trenches cause the drift region to be folded in the vertical direction, leading to a shortened cell pitch and a reduced RS,on. Fourthly, the trench gate extended to the BOX further reduces RS,on, owing to the electron accumulation layer. The BV of the MT MOSFET increases from 309 V for a conventional SOI lateral double diffused metal–oxide semiconductor (LDMOS) to 632 V at the same half cell pitch of 21.5 μm, and RS,on decreases from 419 mΩ·cm2 to 36.6 mΩ·cm2. The proposed structure can also help to dramatically reduce the cell pitch at the same breakdown voltage.
Keywords:  silicon-on-insulator      electric field      breakdown voltage      trench gate      trench  
Received:  19 September 2010      Revised:  12 October 2010      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  84.70.p  
Fund: Projects supported by the National Natural Science Foundation of China (Grant Nos. 60806025 and 60976060), the Science Fund of the National Laboratory of Analog Integrated Circuit (Grant No. 9140C0903070904), and the Innovation Foundation of the State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. CXJJ201004).

Cite this article: 

Luo Xiao-Rong(罗小蓉), Yao Guo-Liang(姚国亮), Chen Xi(陈曦), Wang Qi(王琦), Ge Rui(葛瑞), and Florin Udrea Ultra-low on-resistance high voltage (>600 V) SOI MOSFET with a reduced cell pitch 2011 Chin. Phys. B 20 028501

[1] Sona W S, Sohnb Y H and Choia S 2004 Microelectronics Journal bf35 393
[2] Fujishima N, Andre C and Salama T 1997 Proc. IEDM pp. 359--362
[3] Fujishima N, Sugi A, Andre C and Salama T 2006 US Patent 7005352B2
[4] Varadarajan K R, Chow T P and Wang J 2007 Proc. IEEE ISPSD 233
[5] Johnny K O Sin and Wan Chai 1993 US Patent 5227653
[6] Luo X R, Zhang B and Li Z J 2007 Solid-State Electron. bf51 493
[7] Zhang B, Li Z J, Hu S D and Luo X R 2009 IEEE Trans. Electron. Devices bf56 2327
[8] Luo X R, Li Z J, Zhang B, Fu D P, Zhan Z, Chen K F, Hu S D, Zhang Z Y, Feng Z C and Yan B 2008 IEEE Electron. Device Lett. bf29 1395
[9] Luo X R, Zhang B, Li Z J, Guo Y F, Tang X W and Liu Y 2007 IEEE Electron. Device Lett. bf28 422
[10] Luo X R, Wang Y G, Deng H and Udrea F 2010 Chin. Phys. B bf19 077306
[11] Hu S D, Li Z J and Zhang B 2009 Chin. Phys. B bf18 315
[12] Hu S D, Li Z J, Zhang B and Luo X R 2010 Chin. Phys. B bf19 037303
[13] Letavic T, Arnold E and Simpson M 1997 Proc. IEEE ISPSD 49
[14] Paul A K, Leung Y K, Plummer J D, Wong S S, Kuehne S C, Huang V S K H and Nguyen C T 1996 Proc. IEEE ISPSD 89
[15] Stoisiek M, Oppermann M, Schwalke K G and Takacs U 1997 Proc. IEEE ISPSD 325
[16] Hossain Z, Imam M, Fulton J and Tanaka M 2002 Proc. IEEE ISPSD 137
[17] Mukherjee S 1996 Technologies for High Voltage ICs (New York: Springer-Verlag)
[18] Yasuhara N, Nakagawa A and Furukawa K 1991 Proc. IEEE IEDM 141
[19] Nakagawa A, Yasuhara N and Baba Y 1991 IEEE Trans. Electron. Devices bf38 1650
[20] Koops G E J, Hijzen E A, Hueting R J E and Zandt M A A 2004 Proc. ISPSD 185
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[4] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[5] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[6] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[7] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[8] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[9] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[10] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[11] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[12] Propagation of terahertz waves in nonuniform plasma slab under "electromagnetic window"
Hao Li(李郝), Zheng-Ping Zhang(张正平), and Xin Yang (杨鑫). Chin. Phys. B, 2022, 31(3): 035202.
[13] Effect of an electric field on dewetting transition of nitrogen-water system
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军). Chin. Phys. B, 2022, 31(3): 036801.
[14] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[15] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
No Suggested Reading articles found!