CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effect of an electric field on dewetting transition of nitrogen-water system |
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳)†, and Hangjun Lu(陆杭军)‡ |
Department of Physics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract We investigate the influence of an external electric field on the dewetting behavior of nitrogen-water systems between two hydrophobic plates using molecular dynamics simulations. It is found that the critical distance of dewetting increases obviously with the electric field strength, indicating that the effective range of hydrophobic attraction is extended. The mechanism behind this interesting phenomenon is related to the rearrangement of hydrogen bond networks between water molecules induced by the external electric field. Changes in the hydrogen bond networks and in the dipole orientation of the water molecules result in the redistribution of the neutral nitrogen molecules, especially in the region close to the hydrophobic plates. Our findings may be helpful for understanding the effects of the electric field on the long-range hydrophobic interactions.
|
Received: 10 July 2021
Revised: 07 August 2021
Accepted manuscript online: 17 August 2021
|
PACS:
|
64.70.F-
|
(Liquid-vapor transitions)
|
|
68.03.Hj
|
(Liquid surface structure: measurements and simulations)
|
|
68.03.-g
|
(Gas-liquid and vacuum-liquid interfaces)
|
|
68.18.Jk
|
(Phase transitions in liquid thin films)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11875237). |
Corresponding Authors:
Xiaoyan Zhou, Hangjun Lu
E-mail: zxylu@zjnu.cn;zjlhjun@zjnu.cn
|
Cite this article:
Qi Feng(冯琦), Jiaxian Li(厉嘉贤), Xiaoyan Zhou(周晓艳), and Hangjun Lu(陆杭军) Effect of an electric field on dewetting transition of nitrogen-water system 2022 Chin. Phys. B 31 036801
|
[1] Chandler D 2005 Nature 437 640 [2] Berne B J, Weeks J D and Zhou R 2009 Annu. Rev. Phys. Chem. 60 85 [3] Blokzijl W and Engberts J B F N 1993 Angew. Chem. Int. Ed. Engl. 32 1545 [4] Hummer G, Garde S, Garcia A E and Pratt L R 2000 Chem. Phys. 258 349 [5] Ball P 2008 Chem. Rev. 108 74 [6] Zhou R, Huang X, Margulis C J and Berne B J 2004 Science 305 1605 [7] Liu P, Huang X, Zhou R and Berne B J 2005 Nature 437 159 [8] Morrone J A, Li J and Berne B J 2012 J. Phys. Chem. B 116 378 [9] Camilloni C, Bonetti D, Morrone A, Giri R, Dobson C M, Brunori M, Gianni S and Vendruscolo M 2016 Sci. Rep. 6 28285 [10] Wolde P R t and Chandler D 2002 Proc. Natl. Acad. USA 99 6539 [11] Hua L, Huang X, Liu P, Zhou R and Berne B J 2007 J. Phys. Chem. B 111 9069 [12] Lum K, Chandler D and Weeks J D 1999 J. Phys. Chem. B 103 4570 [13] Huang D M and Chandler D 2000 Proc. Natl. Acad. Sci. USA 97 8324 [14] Huang X, Zhou R and Berne B J 2005 J. Phys. Chem. B 109 3546 [15] Choudhury N and Pettitt B M 2007 J. Am. Chem. Soc. 129 4847 [16] Rego N B, Xi E and Patel A J 2019 J. Am. Chem. Soc. 141 2080 [17] Ishida N, Inoue T, Miyahara M and Higashitani K 2000 Langmuir 16 6377 [18] Lou S T, Ouyang Z Q, Zhang Y, Li X J, Hu J, Li M Q and Yang F J 2000 J. Vacuum Sci. Technol. B 18 2573 [19] Karpitschka S, Dietrich E, Seddon J R T, Zandvliet H J W, Lohse D and Riegler H 2012 Phys. Rev. Lett. 109 066102 [20] Koishi T, Yoo S, Yasuoka K, Zeng X C, Narumi T, Susukita R, Kawai A, Furusawa H, Suenaga A, Okimoto N, Futatsugi N and Ebisuzaki T 2004 Phys. Rev. Lett. 93 185701 [21] Agrawal A, Park J, Ryu D Y, Hammond P T, Russell T P and McKinley G H 2005 Nano Lett. 5 1751 [22] Zhang X H, Zhang X, Sun J, Zhang Z, Li G, Fang H, Xiao X, Zeng X and Hu J 2007 Langmuir 23 1778 [23] Li W, Zuo X, Zhou X and Lu H 2019 J. Chem. Phys. 150 104702 [24] Zhang M, Zuo G, Chen J, Gao Y and Fang H 2013 Sci. Rep. 3 1660 [25] Choudhury N and Pettitt B M 2005 J. Am. Chem. Soc. 127 3556 [26] Li J, Liu T, Li X, Ye L, Chen H, Fang H, Wu Z and Zhou R 2005 J. Phys. Chem. B 109 13639 [27] Zangi R and Berne B J 2008 J. Phys. Chem. B 112 8634 [28] Zangi R 2011 J. Phys. Chem. B 115 2303 [29] Remsing R C, Xi E, Vembanur S, Sharma S, Debenedetti P G, Garde S and Patel A J 2015 Proc. Natl. Acad. Sci. USA 112 8181 [30] Wallqvist A and Berne B J 1995 J. Phys. Chem. 99 2893 [31] Huang D M and Chandler D 2002 J. Phys. Chem. B 106 2047 [32] Bolhuis P G and Chandler D 2000 J. Chem. Phys. 113 8154 [33] Wolde P R T, Sun S X and Chandler D 2001 Phys. Rev. E 65 011201 [34] Li J, Lu H and Zhou X 2020 Nanoscale 12 12801 [35] Berendsen H J C, Postma J P M, Gunsteren W F V, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684 [36] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269 [37] Rappe A K, Casewit C J, Colwell K S, Goddard W A and Skiff W M 1992 J. Am. Chem. Soc. 114 10024 [38] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089 [39] Wang C L, Li Z X, Li J Y, Xiu P, Hu J and Fang H P 2008 Chin. Phys. B 17 2646 [40] Lee C Y, Mccammon J A and Rossky P J 1984 J. Chem. Phys. 80 4448 [41] Sedlmeier F, Janecek J, Sendner C, Bocquet L, Netz R R and Horinek D 2008 Biointerphases 3 FC23 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|