Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 028402    DOI: 10.1088/1674-1056/20/2/028402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

InGaN/GaN multiple quantum well solar cells with an enhanced open-circuit voltage

Zhang Xiao-Bin(张小宾)a)†, Wang Xiao-Liang(王晓亮)a)b), Xiao Hong-Ling(肖红领)a)b), Yang Cui-Bai(杨翠柏)a)b), Hou Qi-Feng(侯奇峰)a), Yin Hai-Bo(殷海波)a), Chen Hong(陈竑)a), and Wang Zhan-Guo(王占国) b)
a Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China; Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China
Abstract  In this paper, InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied. The short-circuit density, fill factor and open-circuit voltage (Voc) of the device are 0.7 mA/cm2, 0.40 and 2.22 V, respectively. The results exhibit a significant enhancement of Voc compared with those of InGaN-based hetero and homojunction cells. This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing Voc of an In-rich InxGa1-xN solar cell. The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm). The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.
Keywords:  InGaN      solar cell      multiple quantum wells  
Received:  23 April 2010      Revised:  19 September 2010      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  85.35.Be (Quantum well devices (quantum dots, quantum wires, etc.))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: Project supported by Knowledge Innovation Engineering of the Chinese Academy of Sciences (Grant No. YYYJ-0701-02), the National Natural Science Foundation of China (Grant Nos. 60890193 and 60906006), the State Key Development Program for Basic Research of China (Grant Nos. 2006CB604905 and 2010CB327503), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. ISCAS2008T01, ISCAS2009L01, and ISCAS2009L02).

Cite this article: 

Zhang Xiao-Bin(张小宾), Wang Xiao-Liang(王晓亮), Xiao Hong-Ling(肖红领), Yang Cui-Bai(杨翠柏), Hou Qi-Feng(侯奇峰), Yin Hai-Bo(殷海波), Chen Hong(陈竑), and Wang Zhan-Guo(王占国) InGaN/GaN multiple quantum well solar cells with an enhanced open-circuit voltage 2011 Chin. Phys. B 20 028402

[1] Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev V V, Ivanov S V, Bechstedt F, Furthmuller J, Harima H, Mudryi V, Aderhold J, Semchinova O and Graul J 2002 Phys. Status Solidi B 229 R1
[2] Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
[3] Xiao H L, Wang X L, Wang J X, Zhang N H, Liu H X, Zeng Y P, Li J M and Wang Z G 2005 J. Cryst. Growth 276 401
[4] Hamzaoui H, Bouazzi A S and Rezig B 2005 Sol. Energy Mater. Sol. Cells 87 595
[5] Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
[6] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F and Li J M 2007 J. Phys. D: Appl. Phys. 40 7335
[7] Zhang X, Wang X, Xiao H, Yang C, Ran J, Wang C, Hou Q, Li J and Wang Z 2008 J. Phys. D: Appl. Phys. 41 245104
[8] Yang C B, Wang X L, Xiao H L, Ran J X, Wang C M, Hu G X, Wang X H, Zhang X B, Li J P and Li J M 2007 Phys. Status Solidi A 204 4288
[9] Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
[10] Zheng X H, Horng R H, Wuu D S, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2008 Appl. Phys. Lett. 93 261108
[11] Horng R H, Ting L S, Tsai Y L, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2009 IEEE Electron. Dev. Lett. 30 724
[12] Tabata A, Teles L K, Scolfaro L M R, Leite J R, Kharchenko A, Frey T, As D J, Schikora D, Lischka K, Furthmuller J and Bechstedt F 2002 Appl. Phys. Lett. 80 769
[13] Barnham K, Ballard I, Barnes J, Connolly J, Griffin P, Kluftinger B, Nelson J, Tsui E and Zachariou A 1997 Appl. Surf. Sci. 114 722
[14] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
[15] Rimada J C, Hernandez L, Connolly J P and Barnham K W J 2007 Microelectron. J. 38 513
[16] Barnham K, Connolly J, Griffin P, Haarpaintner G, Nelson J, Tsui E, Zachariou A, Osborne J, Button C, Hill G, Hopkinson M, Pate M, Roberts J and Foxon T 1996 J. Appl. Phys. 80 1201
[17] Cai X, Zeng S and Zhang B 2009 Appl. Phys. Lett. 95 173504
[18] Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
[19] Lai K Y, Lin G J, Lai Y L, Chen Y F and He J H 2010 Appl. Phys. Lett. 96 081103
[20] Costa P M F J, Datta R, Kappers M J, Vickers M E, Humphreys C J, Graham D M, Dawson P, Godfrey M J, Thrush E J and Mullins J T 2006 Phys. Status Solidi A 203 1729 endfootnotesize
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[3] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[4] Hexagonal boron phosphide and boron arsenide van der Waals heterostructure as high-efficiency solar cell
Yi Li(李依), Dong Wei(魏东), Gaofu Guo(郭高甫), Gao Zhao(赵高), Yanan Tang(唐亚楠), and Xianqi Dai(戴宪起). Chin. Phys. B, 2022, 31(9): 097301.
[5] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[6] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[7] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[8] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[9] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[10] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[11] Analysis of the generation mechanism of the S-shaped JV curves of MoS2/Si-based solar cells
He-Ju Xu(许贺菊), Li-Tao Xin(辛利桃), Dong-Qiang Chen(陈东强), Ri-Dong Cong(丛日东), and Wei Yu(于威). Chin. Phys. B, 2022, 31(3): 038503.
[12] An n—n type heterojunction enabling highly efficientcarrier separation in inorganic solar cells
Gang Li(李刚), Yuqian Huang(黄玉茜), Rongfeng Tang(唐荣风), Bo Che(车波), Peng Xiao(肖鹏), Weitao Lian(连伟涛), Changfei Zhu(朱长飞), and Tao Chen(陈涛). Chin. Phys. B, 2022, 31(3): 038803.
[13] Reveal the large open-circuit voltage deficit of all-inorganicCsPbIBr2 perovskite solar cells
Ying Hu(胡颖), Jiaping Wang(王家平), Peng Zhao(赵鹏), Zhenhua Lin(林珍华), Siyu Zhang(张思玉), Jie Su(苏杰), Miao Zhang(张苗), Jincheng Zhang(张进成), Jingjing Chang(常晶晶), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(3): 038804.
[14] Charge transfer modification of inverted planar perovskite solar cells by NiOx/Sr:NiOx bilayer hole transport layer
Qiaopeng Cui(崔翘鹏), Liang Zhao(赵亮), Xuewen Sun(孙学文), Qiannan Yao(姚倩楠), Sheng Huang(黄胜), Lei Zhu(朱磊), Yulong Zhao(赵宇龙), Jian Song(宋健), and Yinghuai Qiang(强颖怀). Chin. Phys. B, 2022, 31(3): 038801.
[15] Effect of net carriers at the interconnection layer in tandem organic solar cells
Li-Jia Chen(陈丽佳), Guo-Xi Niu(牛国玺), Lian-Bin Niu(牛连斌), and Qun-Liang Song(宋群梁). Chin. Phys. B, 2022, 31(3): 038802.
No Suggested Reading articles found!