INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
InGaN/GaN multiple quantum well solar cells with an enhanced open-circuit voltage |
Zhang Xiao-Bin(张小宾)a)†, Wang Xiao-Liang(王晓亮)a)b), Xiao Hong-Ling(肖红领)a)b), Yang Cui-Bai(杨翠柏)a)b), Hou Qi-Feng(侯奇峰)a), Yin Hai-Bo(殷海波)a), Chen Hong(陈竑)a), and Wang Zhan-Guo(王占国) b) |
a Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China; b Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, P. O. Box 912, Beijing 100083, China
|
|
|
Abstract In this paper, InGaN/GaN multiple quantum well solar cells (MQWSCs) with an In content of 0.15 are fabricated and studied. The short-circuit density, fill factor and open-circuit voltage (Voc) of the device are 0.7 mA/cm2, 0.40 and 2.22 V, respectively. The results exhibit a significant enhancement of Voc compared with those of InGaN-based hetero and homojunction cells. This enhancement indicates that the InGaN/GaN MQWSC offers an effective way for increasing Voc of an In-rich InxGa1-xN solar cell. The device exhibits an external quantum efficiency (EQE) of 36% (7%) at 388 nm (430 nm). The photovoltaic performance of the device can be improved by optimizing the structure of the InGaN/GaN multiple quantum well.
|
Received: 23 April 2010
Revised: 19 September 2010
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
85.35.Be
|
(Quantum well devices (quantum dots, quantum wires, etc.))
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
Fund: Project supported by Knowledge Innovation Engineering of the Chinese Academy of Sciences (Grant No. YYYJ-0701-02), the National Natural Science Foundation of China (Grant Nos. 60890193 and 60906006), the State Key Development Program for Basic Research of China (Grant Nos. 2006CB604905 and 2010CB327503), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos. ISCAS2008T01, ISCAS2009L01, and ISCAS2009L02). |
Cite this article:
Zhang Xiao-Bin(张小宾), Wang Xiao-Liang(王晓亮), Xiao Hong-Ling(肖红领), Yang Cui-Bai(杨翠柏), Hou Qi-Feng(侯奇峰), Yin Hai-Bo(殷海波), Chen Hong(陈竑), and Wang Zhan-Guo(王占国) InGaN/GaN multiple quantum well solar cells with an enhanced open-circuit voltage 2011 Chin. Phys. B 20 028402
|
[1] |
Davydov V Y, Klochikhin A A, Seisyan R P, Emtsev V V, Ivanov S V, Bechstedt F, Furthmuller J, Harima H, Mudryi V, Aderhold J, Semchinova O and Graul J 2002 Phys. Status Solidi B 229 R1
|
[2] |
Wu J, Walukiewicz W, Yu K M, Shan W, Ager J W, Haller E E, Lu H, Schaff W J, Metzger W K and Kurtz S 2003 J. Appl. Phys. 94 6477
|
[3] |
Xiao H L, Wang X L, Wang J X, Zhang N H, Liu H X, Zeng Y P, Li J M and Wang Z G 2005 J. Cryst. Growth 276 401
|
[4] |
Hamzaoui H, Bouazzi A S and Rezig B 2005 Sol. Energy Mater. Sol. Cells 87 595
|
[5] |
Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
|
[6] |
Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F and Li J M 2007 J. Phys. D: Appl. Phys. 40 7335
|
[7] |
Zhang X, Wang X, Xiao H, Yang C, Ran J, Wang C, Hou Q, Li J and Wang Z 2008 J. Phys. D: Appl. Phys. 41 245104
|
[8] |
Yang C B, Wang X L, Xiao H L, Ran J X, Wang C M, Hu G X, Wang X H, Zhang X B, Li J P and Li J M 2007 Phys. Status Solidi A 204 4288
|
[9] |
Neufeld C J, Toledo N G, Cruz S C, Iza M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
|
[10] |
Zheng X H, Horng R H, Wuu D S, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2008 Appl. Phys. Lett. 93 261108
|
[11] |
Horng R H, Ting L S, Tsai Y L, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2009 IEEE Electron. Dev. Lett. 30 724
|
[12] |
Tabata A, Teles L K, Scolfaro L M R, Leite J R, Kharchenko A, Frey T, As D J, Schikora D, Lischka K, Furthmuller J and Bechstedt F 2002 Appl. Phys. Lett. 80 769
|
[13] |
Barnham K, Ballard I, Barnes J, Connolly J, Griffin P, Kluftinger B, Nelson J, Tsui E and Zachariou A 1997 Appl. Surf. Sci. 114 722
|
[14] |
Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
|
[15] |
Rimada J C, Hernandez L, Connolly J P and Barnham K W J 2007 Microelectron. J. 38 513
|
[16] |
Barnham K, Connolly J, Griffin P, Haarpaintner G, Nelson J, Tsui E, Zachariou A, Osborne J, Button C, Hill G, Hopkinson M, Pate M, Roberts J and Foxon T 1996 J. Appl. Phys. 80 1201
|
[17] |
Cai X, Zeng S and Zhang B 2009 Appl. Phys. Lett. 95 173504
|
[18] |
Dahal R, Pantha B, Li J, Lin J Y and Jiang H X 2009 Appl. Phys. Lett. 94 063505
|
[19] |
Lai K Y, Lin G J, Lai Y L, Chen Y F and He J H 2010 Appl. Phys. Lett. 96 081103
|
[20] |
Costa P M F J, Datta R, Kappers M J, Vickers M E, Humphreys C J, Graham D M, Dawson P, Godfrey M J, Thrush E J and Mullins J T 2006 Phys. Status Solidi A 203 1729 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|