Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 028502    DOI: 10.1088/1674-1056/20/2/028502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Numerical analysis of In0.53Ga0.47As/InP single photon avalanche diodes

Zhou Peng(周鹏)a), Li Chun-Fei(李淳飞) a)†, Liao Chang-Jun(廖常俊)b), Wei Zheng-Jun(魏正军)b), and Yuan Shu-Qiong(袁书琼)b)
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b Laboratory of Photonic Information Technology, School for Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
Abstract  A rigorous theoretical model for In0.53Ga0.47As/InP single photon avalanche diode is utilized to investigate the dependences of single photon quantum efficiency and dark count probability on structure and operation condition. In the model, low field impact ionizations in charge and absorption layers are allowed, while avalanche breakdown can occur only in the multiplication layer. The origin of dark counts is discussed and the results indicate that the dominant mechanism that gives rise to dark counts depends on both device structure and operating condition. When the multiplication layer is thicker than a critical thickness or the temperature is higher than a critical value, generation–recombination in the absorption layer is the dominative mechanism; otherwise band-to-band tunneling in the multiplication layer dominates the dark counts. The thicknesses of charge and multiplication layers greatly affect the dark count and the peak single photon quantum efficiency and increasing the multiplication layer width may reduce the dark count probability and increase the peak single photon quantum efficiency. However, when the multiplication layer width exceeds 1 μm, the peak single photon quantum efficiency increases slowly and it is finally saturated at the quantum efficiency of the single photon avalanche diodes.
Keywords:  single photon avalanche diodes      gate-mode      single photon quantum efficiency      dark count probability  
Received:  30 June 2010      Revised:  19 August 2010      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. G2001039302 and 007CB307001), and the Guangdong Provincial Key Technology Research and Development Program, China (Grant No. 2007B010400009).

Cite this article: 

Zhou Peng(周鹏), Li Chun-Fei(李淳飞), Liao Chang-Jun(廖常俊), Wei Zheng-Jun(魏正军), and Yuan Shu-Qiong(袁书琼) Numerical analysis of In0.53Ga0.47As/InP single photon avalanche diodes 2011 Chin. Phys. B 20 028502

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Ng J S, Tan C H and David J P R 2004 J. Mod. Opt. 51 1315
[3] Namekata N, Sasamori S and Inoue S 2006 Opt. Express 14 10043
[4] Wei Z, Li K, Zhou P, Wang J, Liao C, Guo J, Liang R and Liu S 2008 Chin. Phys. B 17 4142
[5] Wang J, Wu Z, Zhang B, Wei Z, Liao C and Liu S 2008 Acta Phys. Sin. 57 5620 (in Chinese)
[6] Pellegrini S, Warburton R E, Tan L J J, Ng J S, Krysa A B, Groom K, David J P R, Cova S, Robertson M J and Buller G S 2006 IEEE J. Quantum Electron. 42 397
[7] Liu M, Bai X, Hu C, Guo X, Campbell J C, Pan Z and Tashima M M 2007 IEEE Photon. Technol. Lett. 42 378
[8] Jiang X, Itzler M A, Ben-Michael R and Slomkowski K 2007 IEEE J. Selec. Top. Quantum Electron. 13 895
[9] Karve G, Wang S, Ma F, Li X and Campbell J C 2005 Appl. Phys. Lett. 86 063505
[10] Wang S, Ma F, Li X, Karve G, Zheng X and Campbell J C 2003 Appl. Phys. Lett. 82 1971
[11] Sugihara K, Yagyu E and Tokuda Y 2006 J. Appl. Phys. 99 124502
[12] Tan C H, Rees G J, Houston P A, Ng J S, Ng W K and David P R 2004 Appl. Phys. Lett. 84 2322
[13] Yang K, Lu H X, Lo Y H, Bethune D S and Risk W P 2003 Appl. Phys. Lett. 83 2955
[14] Ramirez D A, Hayat M M, Karve G, Campbell J C, Torres S N, Saleh B E A and Teich M C 2006 IEEE J. Quantum Electron. 42 137
[15] Humphreys D A, King R J, Jenkins D and Moseley A J 1985 IEEE Electron. Lett. 21 1187
[16] Karve G 2005 Ph. D. Thesis (The University of Texas at Austin, Austin)
[17] Moll J L 1964 Physics of Semiconductor (New York: McGraw-Hill)
[18] Forrest S R, Leheny R F, Nahory R E and Pollack W A 1980 Appl. Phys. Lett. 37 322
[19] Sze S Z 1981 Physics of Semiconductor Devices 2nd edn. (New York: Wiley)
[20] Hang Z, Shen H and Pollak F H 1990 Solid State Commun. 73 15
[21] Yu P W and Kuphal E 1984 Solid State Commun. 49 907 endfootnotesize
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[5] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[6] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[7] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[8] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[9] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[10] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[11] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
No Suggested Reading articles found!