Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027201    DOI: 10.1088/1674-1056/20/2/027201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electron tunneling in single layer graphene with an energy gap

Xu Xu-Guang(徐旭光)a), Zhang Chao(张潮) b), Xu Gong-Jie(徐公杰)a), and Cao Jun-Cheng(曹俊诚)a)†
a Laboratory of Terahertz Solid-State Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road, Shanghai 200050, China; b School of Engineering Physics, University of Wollongong, New South Wales 2522, Australia
Abstract  When a single layer graphene is epitaxially grown on silicon carbide, it will exhibit a finite energy gap like a conventional semiconductor, and its energy dispersion is no longer linear in momentum in the low energy regime. In this paper, we have investigated the tunneling characteristics through a two-dimensional barrier in a single layer graphene with an energy gap. It is found that when the electron is at a zero angle of incidence, the transmission probability as a function of incidence energy has a gap. Away from the gap the transmission coefficient oscillates with incidence energy which is analogous to that of a conventional semiconductor. The conductance under zero temperature has a gap. The properties of electron transmission may be useful for developing graphene-based nano-electronics.
Keywords:  graphene      transmission  
Received:  13 May 2010      Revised:  08 October 2010      Accepted manuscript online: 
PACS:  72.10.Bg (General formulation of transport theory)  
  73.23.Ad (Ballistic transport)  
  73.63.Rt (Nanoscale contacts)  

Cite this article: 

Xu Xu-Guang(徐旭光), Zhang Chao(张潮), Xu Gong-Jie(徐公杰), and Cao Jun-Cheng(曹俊诚) Electron tunneling in single layer graphene with an energy gap 2011 Chin. Phys. B 20 027201

[1] Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature (London) 438 201
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature (London) 438 197
[4] Nair R R, Blake P, Grigorenko A N, Novodelov K S, Booth T J, Stauber T, Peres N M R and Geim A K 2008 Science 320 1308
[5] Zhang C, Chen L and Ma Z S 2008 Phys. Rev. B 77 241402(R)
[6] Novoselov K S 2007 Nature Mater. 6 183
[7] Mikhailov A and Ziegler K 2008 J. Phys.: Condens. Matter 20 384204
[8] Wright A R, Xu X G, Cao J C and Zhang C 2009 Appl. Phys. Lett. 95 072101
[9] Xu X G and Cao J C 2010 Mod. Phys. Lett. B 24 2243
[10] Wright A R, Cao J C and Zhang C 2009 Phys. Rev. Lett. 103 207401
[11] Katsnelson M I, Novoselov K S and Geim A K 2006 Nature Phys. 2 620
[12] Chen X and Tao J W 2009 Appl. Phys. Lett. 94 262102
[13] Pereira J M, Mlinar V, Peeters F M and Vasilopoulos J P 2006 Phys. Rev. B 74 045424
[14] Pereira J M, Vasilopoulos J P and Peeters F M 2007 Appl. Phys. Lett. 90 132122
[15] Bai C X and Zhang X D 2007 Phys. Rev. B 76 075430
[16] Zhou S Y, Gweon G H, Fedorov A V, First P N, Heer W A, Lee D H, Guinea F, Castro A H and Lanzara A 2007 Nature Mater. 6 770
[17] Zhou S Y, Siegel D A, Fedorov A V, Gabaly F E, Schmid A K, Castro A H, Lee D H and Lanzara A 2008 Nature Mater. 7 259
[18] Setare M R and Jahani 2010 Physica B 405 1433
[19] Masir M R, Vasilopoulos P and Peeters F M 2009 Phys. Rev. B 79 035409 endfootnotesize
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[3] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] Correlated states in alternating twisted bilayer-monolayer-monolayer graphene heterostructure
Ruirui Niu(牛锐锐), Xiangyan Han(韩香岩), Zhuangzhuang Qu(曲壮壮), Zhiyu Wang(王知雨), Zhuoxian Li(李卓贤), Qianling Liu(刘倩伶), Chunrui Han(韩春蕊), and Jianming Lu(路建明). Chin. Phys. B, 2023, 32(1): 017202.
[6] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[7] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[8] Recent advances of defect-induced spin and valley polarized states in graphene
Yu Zhang(张钰), Liangguang Jia(贾亮广), Yaoyao Chen(陈瑶瑶), Lin He(何林), and Yeliang Wang(王业亮). Chin. Phys. B, 2022, 31(8): 087301.
[9] Precisely controlling the twist angle of epitaxial MoS2/graphene heterostructure by AFM tip manipulation
Jiahao Yuan(袁嘉浩), Mengzhou Liao(廖梦舟), Zhiheng Huang(黄智恒), Jinpeng Tian(田金朋), Yanbang Chu(褚衍邦), Luojun Du(杜罗军), Wei Yang(杨威), Dongxia Shi(时东霞), Rong Yang(杨蓉), and Guangyu Zhang(张广宇). Chin. Phys. B, 2022, 31(8): 087302.
[10] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[11] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[12] Reflection and transmission of an Airy beam in a dielectric slab
Xiaojin Yang(杨小锦), Tan Qu(屈檀), Zhensen Wu(吴振森), Haiying Li(李海英), Lu Bai(白璐), Lei Gong(巩蕾), and Zhengjun Li(李正军). Chin. Phys. B, 2022, 31(7): 074202.
[13] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[14] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[15] Non-volatile multi-state magnetic domain transformation in a Hall balance
Yang Gao(高阳), Jingyan Zhang(张静言), Pengwei Dou(窦鹏伟), Zhuolin Li(李卓霖), Zhaozhao Zhu(朱照照), Yaqin Guo(郭雅琴), Chaoqun Hu(胡超群), Weidu Qin(覃维都), Congli He(何聪丽), Shipeng Shen(申世鹏), Ying Zhang(张颖), and Shouguo Wang(王守国). Chin. Phys. B, 2022, 31(6): 067502.
No Suggested Reading articles found!