Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027103    DOI: 10.1088/1674-1056/20/2/027103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO

Weng Zhen-Zhen(翁臻臻)a)b),Zhang Jian-Min(张健敏)c), Huang Zhi-Gao(黄志高)c),and Lin Wen-Xiong(林文雄)a)
a Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; b College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China; c School of Physics and OptoElectronics Technology, Fujian Normal University, Fuzhou 350007, China
Abstract  The influence of oxygen vacancy on the magnetism of Co-doped ZnO has been investigated by the first-principles calculations. It is suggested that oxygen vacancy and its location play crucial roles on the magnetic properties of Co-doped ZnO. The exchange coupling mechanism should account for the magnetism in Co-doped ZnO with oxygen vacancy and the oxygen vacancy is likely to be close to the Co atom. The oxygen vacancy (doping electrons) might be available for carrier mediation but is localized with a certain length and can strengthen the ferromagnetic exchange interaction between Co atoms.
Keywords:  Co-doped ZnO      oxygen vacancy      ferromagnetism  
Received:  25 July 2010      Revised:  13 September 2010      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.55.Gs (II-VI semiconductors)  
  75.50.Pp (Magnetic semiconductors)  
Fund: Project supported by the National Key Project for Basic Research of China (Grant No. 2005CB623605), the Fund of National Engineering Research Center for Optoelectronic Crystalline Materials (Grant No. 2005DC105003) and the National Natural Science Foundation of China (Grant No. 60876069).

Cite this article: 

Weng Zhen-Zhen(翁臻臻), Zhang Jian-Min(张健敏), Huang Zhi-Gao(黄志高), and Lin Wen-Xiong(林文雄) Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO 2011 Chin. Phys. B 20 027103

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science bf294 1488
[2] Dietl T, Ohno H, Matsujura F, Cibert J and Ferand D 2000 Science bf287 1019
[3] Prellier W, Fouchet A and Mercey B 2003 J. Phys.: Condens. Matter bf15 R1583
[4] Chambers S A, Droubay T C, Wang C M, Rosso K M, Heald S M, Schwartz D A, Kittilstved K R and Gamelin D R 2006 Mater. Today bf9 28
[5] Sato K and Katayama-Yoshida H 2000 Jpn. J. Appl. Phys. Part 2 bf39 555
[6] Bruno P and Sandratskii L M 2006 Phys. Rev. B bf73 045203
[7] Petit L, Schulthess T C, Svane A, Szotek Z, Temmerman W M and Janotti A 2006 Phys. Rev. B bf73 045107
[8] Spaldin N A 2004 Phys. Rev. B bf69 125201
[9] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. bf79 988
[10] Janisch R, Gopal P and Spaldin N A 2005 J. Phys.: Condens. Matter bf17 R657
[11] Jin Z, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T and Koinuma H 2001 Appl. Phys. Lett. bf78 3824
[12] Jedrecy N, von Bardeleben H J, Zheng Y and Cantin J L 2004 Phys. Rev. B bf69 041308
[13] Ueda K, Tabata H and Kawai T 2001 Appl. Phys. Lett. bf79 988
[14] Jaffe J E, Droubay T C and Chambers S A 2005 J. Appl. Phys. bf97 073908
[15] Huang B, Zhu D and Ma X 2007 Appl. Surf. Sci. bf253 6892
[16] Hong N H, Sakai J, Huong N T, Poirot N and Ruyter A 2005 Phys. Rev. B bf72 045336
[17] Manivannan A, Glaspell G, Dutta P and Seehra M S 2005 J. Appl. Phys. bf97 (10) D325
[18] Hsu H S, Huang J C A, Huang Y H, Liao Y F, Lin M Z, Lee C H, Lee J F, Chen S F, Lai L Y and Liu C P 2006 Appl. Phys. Lett. bf88 242507
[19] Seghier D and Gislason H P 2009 Physica B bf404 4800
[20] Bl"ochl P E 1994 Phys. Rev. B bf50 17953
[21] Kresse G and Hafner J 1993 Phys. Rev. B bf47 558
[22] Kresse G and Furthm"uller J 1996 Phys. Rev. B bf54 11169
[23] Wu Q Y, Chen Z G, Wu R Q, Xu G G, Huang Z G, Zhang F M and Du Y W 2007 Solid State Commun. bf142 242
[24] Xu G G, Wu Q Y, Chen Z G, Huang Z G, Wu R Q and Feng Y P 2008 Phys. Rev. B bf78 115420
[25] Xu G G, Wu Q Y, Chen Z G, Huang Z G and Feng Y P 2009 J. Appl. Phys. bf106 043708
[26] Perdew J P and Wang Y 1992 Phys. Rev. B bf45 13244
[27] Pemmaraju C D, Hanafin R, Archer T, Braun H B and Sanvito S 2008 Phys. Rev. B bf78 054428
[28] Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C and Waghmare U V 2005 Phys. Rev. Lett. bf94 187204
[29] Biegger E, Fonin M, R"udiger U, Janssen N, Beyer M, Thomay T, Bratschitsch R and Dedkov Yu S 2007 J. Appl. Phys. bf101 073904
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[4] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[5] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[6] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[7] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[8] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[9] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[10] Suppression of persistent photoconductivity in high gain Ga2O3 Schottky photodetectors
Haitao Zhou(周海涛), Lujia Cong(丛璐佳), Jiangang Ma(马剑钢), Bingsheng Li(李炳生), Haiyang Xu(徐海洋), and Yichun Liu(刘益春). Chin. Phys. B, 2021, 30(12): 126104.
[11] Density functional theory study of formaldehyde adsorption and decomposition on Co-doped defective CeO2 (110) surface
Yajing Zhang(张亚婧), Keke Song(宋可可), Shuo Cao(曹硕), Xiaodong Jian(建晓东), and Ping Qian(钱萍). Chin. Phys. B, 2021, 30(10): 103101.
[12] Oxygen vacancies and V co-doped Co3O4 prepared by ion implantation boosts oxygen evolution catalysis
Bo Sun(孙博), Dong He(贺栋), Hongbo Wang(王宏博), Jiangchao Liu(刘江超), Zunjian Ke(柯尊健), Li Cheng(程莉), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2021, 30(10): 106102.
[13] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[14] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[15] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
No Suggested Reading articles found!