CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Aggregation of ferromagnetic and paramagnetic atoms at edges of graphenes and graphite |
Zhou Hai-Qing(周海青)a)c),Yang Huai-Chao(杨怀超)a)c),Qiu Cai-Yu(邱彩玉)a)c), Liu Zheng(刘政)a)c), Yu Fang(余芳)a)c),Hu Li-Jun(胡丽君)a)c), Xia Xiao-Xiang(夏晓翔)b), Yang Hai-Fang(杨海方) b), Gu Chang-Zhi(顾长志)b),and Sun Lian-Feng(孙连峰)a)† |
a National Centre for Nanoscience and Technology, Beijing 100190, China; b Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; c Graduate School of the Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract In this work we report that when ferromagnetic metals (Fe, Co and Ni) are thermally evaporated onto n-layer graphenes and graphite, a metal nanowire and adjacent nanogaps can be found along the edges regardless of its zigzag or armchair structure. Similar features can also be observed for paramagnetic metals, such as Mn, Al and Pd. Meanwhile, metal nanowires and adjacent nanogaps cannot be found for diamagnetic metals (Au and Ag). An external magnetic field during the evaporation of metals can make these unique features disappear for ferromagnetic and paramagnetic metal; and the morphologies of diamagnetic metal do not change after the application of an external magnetic field. We discuss the possible reasons for these novel and interesting results, which include possible one-dimensional ferromagnets along the edge and edge-related binding energy.
|
Received: 27 December 2010
Revised: 27 December 2010
Accepted manuscript online:
|
PACS:
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
61.48.De
|
(Structure of carbon nanotubes, boron nanotubes, and other related systems)
|
|
68.35.Md
|
(Surface thermodynamics, surface energies)
|
|
81.05.Uw
|
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774032, 90921001 and 50952009). |
Cite this article:
Zhou Hai-Qing(周海青), Yang Huai-Chao(杨怀超), Qiu Cai-Yu(邱彩玉), Liu Zheng(刘政), Yu Fang(余芳), Hu Li-Jun(胡丽君), Xia Xiao-Xiang(夏晓翔), Yang Hai-Fang(杨海方), Gu Chang-Zhi(顾长志), and Sun Lian-Feng(孙连峰) Aggregation of ferromagnetic and paramagnetic atoms at edges of graphenes and graphite 2011 Chin. Phys. B 20 026803
|
[1] |
Han K H, Spemann D, Esquinazi P, Hohne R, Riede V and Butz T 2003 wxAdv. Mater.15 1719
|
[2] |
Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M and Butz T 2007 wxPhys. Rev. Lett.98 187204
|
[3] |
Cervenka J, Katsnelson M I and Flipse C F J 2009 wxNature Phys.5 840
|
[4] |
Esquinazi P, Spemann D, Höhne R, Setzer A, Han K H and Butz T 2003 wxPhys. Rev. Lett.91 227201
|
[5] |
Coey J M D, Venkatesan M, Fitzgerald C B, Douvalis A P and Sanders I S 2002 wxNature420 156
|
[6] |
Wang Y, Huang Y, Song Y, Zhang X Y, Ma Y F, Liang J J and Chen Y S 2009 wxNano Lett.9 220
|
[7] |
Makarova T L, Sundqvist B, Höhne R, Esquinazi P, Kopelevich Y, Scharff P, Davydov V, Kashevarova L S and Rakhmanin A V 2001 wxNature413 716
|
[8] |
Makarova T L, Sundqvist B, Höhne R, Esquinazi P, Kopelevich Y, Scharff P, Davydov V, Kashevarova L S and Rakhmanin A V 2006 wxNature440 707
|
[9] |
Service R F 2004 wxScience30 42
|
[10] |
Zhang Z H, Chen C F and Guo W L 2009 wxPhys. Rev. Lett.103 187204
|
[11] |
Radovic L R and Bockrath B 2005 wxJ. Am. Chem. Soc.127 5917
|
[12] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 wxScience306 666
|
[13] |
Lu P, Zhang Z H and Guo W L 2009 wxPhys. Lett. A373 3354
|
[14] |
Ising E 1925 wxZ. Phys.31 253
|
[15] |
Mermin N D and Wagner H 1966 wxPhys. Rev. Lett.17 1133
|
[16] |
Gambardella P, Dallmeyer A, Maiti K, Malagoli M C, Eberhardt W, Kern K and Carbone C 2002 wxNature416 301
|
[17] |
Leuenberger M and Loss D 2001 wxNature410 789
|
[18] |
Zhang L J and Xia T S 2010 wxChin. Phys. B19 117106
|
[19] |
Zhou H Q, Qiu C Y, Liu Z, Yang H C, Hu L J, Liu J, Yang H F, Gu C Z and Sun L F 2010 wxJ. Am. Chem. Soc.132 944
|
[20] |
Luo Z T, Somers L A, Dan Y P, Ly T, Kybert N J, Mele E J and Johnson A T C 2010 wxNano Lett.10 777
|
[21] |
Zhang Z Y and Lagally M G 1997 wxScience276 377
|
[22] |
Zhou B H, Duan Z G, Zhou B L and Zhou G H 2010 wxChin. Phys. B19 037204
|
[23] |
Warner J H, Schaffel F, Rummeli M H and Buchner B 2009 wxChem. Mater.21 2418
|
[24] |
You Y M, Ni Z H, Yu T and Shen Z X 2008 wxAppl. Phys. Lett.93 163112
|
[25] |
Jia X T, Hofmann M, Meunier V, Sumpter B G, Campos-Delgado J, Romo-Herrera J M, Son H, Hsieh Y P, Reina A, Kong J, Terrones M and Dresselhaus M S 2009 wxScience323 1701
|
[26] |
Warner J H, R"ummeli M H, Ge L, Gemming T, Montanari B, Harrison N M, B"uchner B, Briggs G and Andrew D 2009 wxNat. Nanotechnol.4 500
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|