Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 117202    DOI: 10.1088/1674-1056/20/11/117202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A novel thin drift region device with field limiting rings in substrate

Li Qi(李琦)a), Zhu Jin-Luan(朱金鸾)b),Wang Wei-Dong(王卫东)a), and Wei Xue-Ming(韦雪明)a)
a Guangxi Key Laboratory of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China; b Guilin Strong Micro Electronics Co., Ltd, Guilin 541004, China
Abstract  A novel thin drift region device with heavily doped N+ rings embedded in the substrate is reported, which is called the field limiting rings in substrate lateral double-diffused MOS transistor (SFLR LDMOS). In the SFLR LDMOS, the peak of the electric field at the main junction is reduced due to the transfer of the voltage from the main junction to other field limiting ring junctions, so the vertical electric field is improved significantly. A model of the breakdown voltage is developed, from which optimal spacing is obtained. The numerical results indicate that the breakdown voltage of the device proposed is increased by 76% in comparison to that of the conventional LDMOS.
Keywords:  field limiting ring      reduced surface field      reduced bulk field      breakdown voltage  
Received:  21 April 2011      Revised:  18 June 2011      Accepted manuscript online: 
PACS:  72.80.Cw (Elemental semiconductors)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
Fund: Project supported by the Guangxi Provincial Natural Science Foundation, China (Grant No. 2010GXNSFB013054) and the Guangxi Provincial Key Science and Technology Program, China (Grant No. 11107001-20).

Cite this article: 

Li Qi(李琦), Zhu Jin-Luan(朱金鸾),Wang Wei-Dong(王卫东), and Wei Xue-Ming(韦雪明) A novel thin drift region device with field limiting rings in substrate 2011 Chin. Phys. B 20 117202

[1] Duan B X, Zhang B and Li Z J 2007 Chin. Phys. 16 3754
[2] Li Q, Li Z J and Zhang B 2007 Acta Phys. Sin. 56 6660 (in Chinese)
[3] Mohamed I, Mohammed Q and Jim A 2004 IEEE Trans. Electron Devices 51 141
[4] Imam M, Hossain Z and Quddus M 2003 IEEE Trans. Electron Devices 50 1697
[5] Wu L J, Hu S D, Zhang B and Li Z J 2011 Chin. Phys. B bf 20 027101
[6] Kumar M J and Sithanandam R 2010 IEEE Trans. Electron Devices 57 1719
[7] Luo X R, Fu D P and Lei L 2009 IEEE Trans. Electron Devices 56 1659
[8] Duan B X, Zhang B and Li Z J 2005 Solid-State Electron. 49 1965
[9] Li Q, Zhang B and Li Z J 2008 Acta Phys. Sin. 57 1891 (in Chinese)
[10] Luo X R, Wang Y G and Deng H 2010 IEEE Trans. Electron Devices 57 535
[11] Orouji A A, Sharbati S and Fathipour M 2009 IEEE T. Device Mat. Re. 9 449
[12] Ma X H, Cao Y R, Hao Y and Zhang Y 2011 Chin. Phys. B 20 037305
[13] Cheng J B, Zhang B and Li Z J 2008 IEEE Electron Device Lett. 29 645
[14] Khemka V, Parthasarathy V and Zhu R H 2003 IEEE Electron Device Lett. 24 664
[15] He J, Chan M S and Zhang X 2006 Solid-State Electron. 50 1375
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[4] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[5] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[6] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[7] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[8] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[9] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[10] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[11] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
[12] Simulation study of high voltage GaN MISFETs with embedded PN junction
Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩). Chin. Phys. B, 2020, 29(8): 080701.
[13] Variable-K double trenches SOI LDMOS with high-concentration P-pillar
Lijuan Wu(吴丽娟), Lin Zhu(朱琳), Xing Chen(陈星). Chin. Phys. B, 2020, 29(5): 057701.
[14] Numerical and analytical investigations for the SOI LDMOS with alternated high-k dielectric and step doped silicon pillars
Jia-Fei Yao(姚佳飞), Yu-Feng Guo(郭宇锋), Zhen-Yu Zhang(张振宇), Ke-Meng Yang(杨可萌), Mao-Lin Zhang(张茂林), Tian Xia(夏天). Chin. Phys. B, 2020, 29(3): 038503.
[15] Breakdown voltage enhancement in GaN channel and AlGaN channel HEMTs using large gate metal height
Zhong-Xu Wang(王中旭), Lin Du(杜林), Jun-Wei Liu(刘俊伟), Ying Wang(王颖), Yun Jiang(江芸), Si-Wei Ji(季思蔚), Shi-Wei Dong(董士伟), Wei-Wei Chen(陈伟伟), Xiao-Hong Tan(谭骁洪), Jin-Long Li(李金龙), Xiao-Jun Li(李小军), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(2): 027301.
No Suggested Reading articles found!