Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 117203    DOI: 10.1088/1674-1056/20/11/117203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Injection and transport of electric charge in a metal/copolymer structure

Li Dong-Mei(李冬梅)a)†, Yuan Xiao-Juan(袁晓娟) a), Ma Jia-Sai(马嘉赛)a), and Liu De-Sheng(刘德胜) a)b)
a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; b Department of Physics, Jining University, Qufu 273155, China
Abstract  The dynamical processes of the electric charge injection and transport from a metal electrode to the copolymer are investigated by using a nonadiabatic dynamic approach. The simulations are performed within the framework of an extended version of the one-dimensional Su-Schrieffer-Heeger (SSH) tight-binding model. It is found that the electric charge can be injected into the copolymer by increasing the applied voltage. For different structures of the copolymer, the critical voltage biases are different and the motion of the injected electric charge in the copolymer varies obviously. For the copolymer with a barrier-well-barrier configuration, the injected electric charge forms a wave packet due to the strong electron-lattice interaction in the barrier, then comes into the well and will be confined in it under a weak electric field. Under a medium electric field, the electric charge can go across the interface of two homopolymers and enter into the other potential barrier. For the copolymer with a well-barrier-well configuration, only under strong enough electric field can the electric charge transfer from the potential well into the barrier and ultimately reach a dynamic balance.
Keywords:  injection and transport      electron-lattice interactions      potential barrier      potential well  
Received:  28 January 2011      Revised:  24 June 2011      Accepted manuscript online: 
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  73.40.Gk (Tunneling)  
  71.35.Ee (Electron-hole drops and electron-hole plasma)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB929204), the National Natural Science Foundation of China (Grant No. 11074146), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2010AM037 and ZR2010AM026), and the Independent Innovation Foundation of Shandong University, China (Grant No. 2009TS097).

Cite this article: 

Li Dong-Mei(李冬梅), Yuan Xiao-Juan(袁晓娟), Ma Jia-Sai(马嘉赛), and Liu De-Sheng(刘德胜) Injection and transport of electric charge in a metal/copolymer structure 2011 Chin. Phys. B 20 117203

[1] Tang C W and VanSlyke S A 1987 Appl. Phys. Lett. 51 913
[2] Burrows P E, Shen Z, Bulovic V, Mccarty D M, Forrest S R, Cronin J A and Thompson M E 1996 J. Appl. Phys. 79 7991
[3] Shen Z, Burrows P E, Bulovic V , Forrest S R and Thompson M E 1997 Science 276 2009
[4] Cao G H, Qin D S, Guan M, Zeng Y P and Li J M 2008 Chin. Phys. B 17 1912
[5] Brütting W, Berleb S and Mückl A G 2001 Org. Electron. 2 1
[6] Li D M, Li H H, Li Y, Liu D S and Xie S J 2008 Acta Phys. Sin. 57 (in Chinese)
[7] Sun Q M, Gao C M, Zhao B X and Rao H B 2010 Chin. Phys. B 19 118103
[8] Gao K, Xie S J, Li Y, Yin S, Liu D S and Zhao X 2009 Chin. Phys. B 18 2961
[9] Liu D S, Wang L X, Xie S J, Han S H and Mei L M 2003 Chin. Phys. 12 548
[10] Lee J I, Zyung T, Miller R D, Kim Y H, Jeoung S C and Kim D 2000 J. Mater. Chem. 10 1547
[11] Tian R Y, Yang R Q, Peng J B and Cao Y 2002 Chin. Phys. 14 1032
[12] Bakhshi A K and Bhargava P 2003 J. Chem. Phys. 119 13159
[13] Zhang L Y, Wang P Y and Shi A C 2009 Sci. China Phys. 52 518
[14] Burn P L, Holmes A B, Kraft A, Bradley D D C, Brown A R, Friend R H and Gymer R W 1992 Nature 356 47
[15] Aarnio H, Westerling M, Osterbacka R, Svensson M, Andersson M R and Stubb H 2006 J. Chem. Phys. 321 127
[16] Kanemistu Y, Suzuki K, Masumoto Y, Tomiuchi Y, Shiraishi Y and Kuroda M 1994 Phys. Rev. B 50 2301
[17] Liu D S, Mei L M, Xie S J and Han S H 2000 J. Phys.: Condens. Matter 12 4333
[18] Liu D S, Wan L X, Wei J H, Han S H and Xie S J 2003 Sci. China. Ser. G 46 417
[19] Fu J F, Ren J R, Liu X J, Liu D S and Xie S J 2006 Phys. Rev. B 73 195401
[20] Li Y, Gao K, Sun Z, Yin S, Liu D S and Xie S J 2008 Phys. Rev. B 78 014304
[21] Brankin R W, Gladwell I and Shampine L F, Compure of RKSUITE, Software for ODE IVPS, http://www. netlib.org
[22] Kobayashi M, Colaneri N, Boysel M, Wudl F and Heeger A J 1985 J. Chem. Phys. 82 5717
[23] Xie S J, Han J S, Ma X D, Mei L M and Lin D L 1995 Phys. Rev. B 51 11928
[24] Stoneham A M, Ramos M M D, Almeida A M, Correia H M G, Ribeiro R M, Ness H and Fisher A J 2002 J. Phys.: Condens. Matter 14 9877
[25] Liu D S, Xie S J and Han S H 2000 Acta Phys. Sin. 49 1556 (in Chinese)
[1] Exact solutions of the Schrödinger equation for a class of hyperbolic potential well
Xiao-Hua Wang(王晓华), Chang-Yuan Chen(陈昌远), Yuan You(尤源), Fa-Lin Lu(陆法林), Dong-Sheng Sun(孙东升), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(4): 040301.
[2] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[3] Improvement of mobility edge model by using new density of states with exponential tail for organic diode
Muhammad Ammar Khan, Sun Jiu-Xun (孙久勋). Chin. Phys. B, 2015, 24(4): 047203.
[4] Electronic transport for armchair graphene nanoribbons with a potential barrier
Zhou Ben-Hu(周本胡), Duan Zi-Gang(段子刚), Zhou Ben-Liang(周本良), and Zhou Guang-Hui(周光辉). Chin. Phys. B, 2010, 19(3): 037204.
[5] The stability of Bose--Einstein condensates in a two-dimensional shallow trap
Zhou Xiao-Yan(周小燕), Mu Ai-Xia(穆爱霞), and Xue Ju-Kui(薛具奎). Chin. Phys. B, 2007, 16(11): 3197-3203.
[6] Electron tunnelling phase time and dwell time through an associated delta potential barrier
Bai Er-Juan (白尔隽), Shu Qi-Qing (舒启清). Chin. Phys. B, 2005, 14(1): 208-211.
[7] TIGHT-BINDING MOLECULAR DYNAMICS STUDY OF C60-GRAPHITE COLLISIONS
Fang Yun-tuan (方云团), Luo Cheng-lin (罗成林). Chin. Phys. B, 2000, 9(8): 581-585.
No Suggested Reading articles found!