Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114205    DOI: 10.1088/1674-1056/20/11/114205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Sideband entanglement in collective resonance fluorescence

Zhang Xue-Hua(张雪华) and Hu Xiang-Ming(胡响明)
School of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
Abstract  We examine the quantum correlation between the Mollow sidebands in the collective resonance fluorescence from a strongly driven ensemble of two-level atoms. By using the criterion proposed by Shchukin and Vogel, we show that non-Gaussian entanglement exists between the two separated sidebands. The responsible mechanism is traced to the spontaneous parametric process, in which the nonclassical correlation is established. This suggests that the collective resonance fluorescence provides a continuous source for the non-Gaussian entangled light and thus has great potentials for various applications in quantum information and quantum computation.
Keywords:  collective resonance fluorescence      non-Gaussian entanglement      spontaneous parametric interaction  
Received:  11 April 2011      Revised:  11 May 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Bg (Entanglement production and manipulation)  
  32.50.+d (Fluorescence, phosphorescence (including quenching))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074086) and the Natural Science Foundation of Hubei Province, China (Grant No. 2010CDA075).

Cite this article: 

Zhang Xue-Hua(张雪华) and Hu Xiang-Ming(胡响明) Sideband entanglement in collective resonance fluorescence 2011 Chin. Phys. B 20 114205

[1] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Guhne O and Toth G 2009 Phys. Rep. 474 1
[4] Ou Z Y, Pereira S F, Kimble H J and Peng K C 1992 Phys. Rev. Lett. 68 3663
[5] Aoki T, Takei N, Yonezawa H, Wakui K, Hiraoka T, Furusawa A and van Loock P 2003 Phys. Rev. Lett. 91 080404
[6] Su X L , Tan A H, Jia X J, Zhang J, Xie C D and Peng K C 2007 Phys. Rev. Lett. 98 070502
[7] Josse V, Dantan A, Vernac L, Bramati A, Pinard M and Giacobino E 2003 Phys. Rev. Lett. 91 103601
[8] Josse V, Dantan A, Bramati A, Pinard M and Giacobino E 2004 Phys. Rev. Lett. 92 123601
[9] Wu Y and Yang X X 2004 Phys. Rev. A 70 053818
[10] Ikram M, Li G X and Zubairy M S 2007 Phys. Rev. A 76 042317
[11] Zhou L, Guo H Y and Patnaik A K 2009 Phys. Rev. A 79 062102
[12] Lü X Y, Huang P, Yang W X and Yang X X 2009 Phys. Rev. A 80 032303
[13] Cheng G L, Hu X M, Zhong W X and Li Q 2008 Phys. Rev. A 78 033811
[14] Zhang X and Hu X M 2010 Phys. Rev. A 81 013811
[15] Gomes R M, Salles A, Toscano F, Souto Ribeiro P H and Walborn S P 2009 Proc. Natl. Acad. Sci. USA 106 21517
[16] Short R and Mandel L 1983 Phys. Rev. Lett. 51 384
[17] Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J and Schiller S 2001 Phys. Rev. Lett. 87 050402
[18] Ourjoumtsev A, Tualle-Brouri R and Grangier P 2006 Phys. Rev. Lett. 96 213601
[19] Lvovsky A I and Mlynek J 2002 Phys. Rev. Lett. 88 250401
[20] Ourjoumtsev A, Tualle-Brouri R, Laurat J and Grangier P 2006 Science 312 83
[21] Neergaard-Nielsen J S, Melholt Nielsen M, Hettich C, Molmer K and Polzik E S 2006 Phys. Rev. Lett. 97 083604
[22] Ourjoumtsev A, Jeong H, Tualle-Brouri R and Grangier P 2007 Nature 448 784
[23] Dong R, Lassen M, Heersink J, Marquardt C, Filip R, Leuchs G and Andersen U L 2008 Nat. Phys. 4 919
[24] Eisert J, Scheel S and Plenio M B 2002 Phys. Rev. Lett. 89 137903
[25] Opatrny T, Kurizki G and Welsch D G 2000 Phys. Rev. A 61 032302
[26] Dellánno F, de Siena S, Albano L and Illuminati F 2007 Phys. Rev. A 76 022301
[27] Cerf N J, Krüger O, Navez P, Werner R F and Wolf M M 2005 Phys. Rev. Lett. 95 070501
[28] Bartlett S D, Sanders B C, Braunstein S L and Nemoto K 2002 Phys. Rev. Lett. 88 097904
[29] Yarnall T, Abouraddy A F, Saleh B E A and Teich M C 2007 Phys. Rev. Lett. 99 170408
[30] Ourjoumtsev A, Tualle-Brouri R, Laurat R and Grangier P 2006 Science 312 83
[31] Ourjoumtsev A, Ferreyrol F, Tualle-Brouri R and Grangier P 2009 Nat. Phys. 5 189
[32] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[33] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[44] Carmichael H J 1985 Phys. Rev. Lett. 55 2790
[45] Vogel W 1991 Phys. Rev. Lett. 67 2450
[36] Gerber S, Rotter D, Slodi`eka L, Eschner J, Carmichael H J and Blatt R 2009 Phys. Rev. Lett. 102 183601
[37] Castro-Beltrán H M 2010 Opt. Commun. 283 4680
[38] Shchukin E and Vogel W 2005 Phys. Rev. Lett. 95 230502
[39] Grünwald P and Vogel W 2010 Phys. Rev. Lett. 104 233602
[40] Mollow B R 1969 Phys. Rev. 188 1969
[41] Wu F Y, Grove R E and Ezekiel S 1975 Phys. Rev. Lett. 35 1426
[42] Aspect A, Roger G, Reynaud S, Dalibard J and Cohen-Tannoudji C 1980 Phys. Rev. Lett. 45 617
[43] Zhou P and Swain S 1999 Phys. Rev. A 59 841
[44] Hu X M and Zhang X H 2008 Phys. Rev. A 77 063809
[45] Lu Z H, Bali S and Thomas J E 1998 Phys. Rev. Lett. 81 3635
[46] Peng J S and Li G X 1998 Introduction to Modern Quantum Optics (Singapore: World Scientific)
[47] John S and Quang T 1997 Phys. Rev. Lett. 78 1888
[48] Schwinger J 1965 Quantum Theory of Angular Momentum (New York: Academic Press) p. 229
[49] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1992 Atom-Photon Interactions (New York: Wiley)
[50] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[51] Simon R 2000 Phys. Rev. Lett. 84 2726
[52] Jayarao A S, Lawande S V and D'Souza R 1990 Phys. Rev. A 42 3044
[53] Joshi A and Puri P R 1991 Phys. Rev. A 43 6428
[54] Boyd R W 1992 Nonlinear Optics (Boston: Academic)
[55] Gross M and Haroche S 1982 Phys. Rep. 93 301
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[3] Heralded path-entangled NOON states generation from a reconfigurable photonic chip
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(6): 064203.
[4] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[5] Enhancing stationary entanglement between two optomechanical oscillators by Coulomb interaction with Kerr medium
Tian-Le Yang(杨天乐), Chen-Long Zhu(朱陈龙), Sheng Liu(刘声), and Ye-Jun Xu(许业军). Chin. Phys. B, 2021, 30(12): 124201.
[6] Single-channel vector magnetic information detection method based on diamond NV color center
Qin-Qin Wang(王琴琴), Rui-Rong Wang(王瑞荣), Jin-Ping Liu(刘金萍), Shao-Zhuo Lin(林绍卓), Liang-Wei Wu(武亮伟), Hao Guo(郭浩), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Jun Tang(唐军), Zong-Min Ma(马宗敏), and Jun Liu (刘俊). Chin. Phys. B, 2021, 30(8): 080701.
[7] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[8] Lie transformation on shortcut to adiabaticity in parametric driving quantum systems
Jian-Jian Cheng(程剑剑), Yao Du(杜瑶), and Lin Zhang(张林). Chin. Phys. B, 2021, 30(6): 060302.
[9] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[10] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[11] A proposal for preparation of cluster states with linear optics
Le Ju(鞠乐), Ming Yang(杨名), and Peng Xue(薛鹏). Chin. Phys. B, 2021, 30(3): 030306.
[12] Fast generation of W state via superadiabatic-based shortcut in circuit quantum electrodynamics
Xue-Mei Wang(王雪梅), An-Qi Zhang(张安琪), Peng Xu(许鹏, and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2021, 30(3): 030307.
[13] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[14] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[15] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
No Suggested Reading articles found!