ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Heralded path-entangled NOON states generation from a reconfigurable photonic chip |
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平)† |
Institute for Quantum Information&State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Maximal multi-photon entangled states, known as NOON states, play an essential role in quantum metrology. With the number of photons growing, NOON states are becoming increasingly powerful and advantageous for obtaining supersensitive and super-resolved measurements. In this paper, we propose a universal scheme for generating three- and four-photon path-entangled NOON states on a reconfigurable photonic chip via photons subtracted from pairs and detected by heralding counters. Our method is postselection free, enabling phase supersensitive measurements and sensing at the Heisenberg limit. Our NOON-state generator allows for integration of quantum light sources as well as practical and portable precision phase-related measurements.
|
Received: 14 October 2021
Revised: 26 October 2021
Accepted manuscript online: 01 November 2021
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
03.67.-a
|
(Quantum information)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0303700) and the Open Funds from the State Key Laboratory of High Performance Computing of China (HPCL, National University of Defense Technology). |
Corresponding Authors:
Ping Xu
E-mail: pingxu520@nju.edu.cn
|
Cite this article:
Xinyao Yu(于馨瑶), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Miaomiao Yu(余苗苗), Chao Wu(吴超),Shichuan Xue(薛诗川), Qilin Zheng(郑骑林), Yingwen Liu(刘英文), Junjie Wu(吴俊杰), and Ping Xu(徐平) Heralded path-entangled NOON states generation from a reconfigurable photonic chip 2022 Chin. Phys. B 31 064203
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733 [3] O'brien J L, Furusawa A and Vučković J 2009 Nat. Photon. 3 687 [4] Nagata T, Okamoto R, O'brien J L, Sasaki K and Takeuchi S 2007 Science 316 726 [5] Ou Z Y 1997 Phys. Rev. A 55 2598 [6] Dowling J P 2008 Contemp. Phys. 49 125 [7] Kok P, Boto A N, Abrams D S, Williams C P, Braunstein S L and Dowling J P 2001 Phys. Rev. A 63 063407 [8] Ou Z Y, Zou X Y, Wang L J and Mandel L 1990 Phys. Rev. A 42 2957 [9] Rarity J G, Tapster P R, Jakeman E, Larchuk T, Campos R A, Teich M C and Saleh B E A 1990 Phys. Rev. Lett. 65 1348 [10] Gong Y X, Xu P, Bai Y F, Yang J, Leng H Y, Xie Z D and Zhu S N 2012 Phys. Rev. A 86 023835 [11] Afek I, Ambar O and Silberberg Y 2010 Science 328 879 [12] Mitchell M W, Lundeen J S and Steinberg A M 2004 Nature 429 161 [13] Kim H, Park H S and Choi S K 2009 Opt. Express 17 19720 [14] Lee S Y, Paterek T, Park H S and Nha H 2012 Opt. Commun. 285 307 [15] Lee H, Kok P, Cerf N J and Dowling J P 2002 Phys. Rev. A 65 030101 [16] Hofmann H F 2004 Phys. Rev. A 70 23812 [17] Xu B, Zou K, Pahlke W and Mathis 2002 Phys. Rev. A 66 14102 [18] Zhang L and Chan K W C 2019 Opt. Commun. 452 258 [19] Zhang L and Chan K W C 2018 Sci. Rep. 8 11440 [20] Matthews J C, Politi A, Bonneau D and O'Brien J L 2011 Phys. Rev. Lett. 107 163602 [21] Reck M, Zeilinger A, Bernstein H J and Bertani P 1994 Phys. Rev. Lett. 73 58 [22] Liu Y W, Wu C, Gu X W, Kong Y C, Yu X X, Ge R Y, Cai X L, Qiang X G, Wu J J, Yang X J and Xu P 2020 Opt. Lett. 45 73 [23] Wu C, Liu Y W, Gu X W, Yu X X, Kong Y C, Wang Y, Qiang X G,Wu J J, Zhu Z H, Yang X J and Xu P 2020 Sci. China Phys. Mech. Astron. 63 220362 [24] Zhu P Y, Liu Y Y, Wu C, Xue S C, Yu X Y, Zheng Q L, Wang Y, Qiang X G, Wu J J and Xu P 2020 Chin. Phys. B 29 114201 [25] Vernon Z, Menotti M, Tison C C, Steidle J A, Fanto M L, Thomas P M, Preble S F, Smith A M, Alsing P M, Liscidini M and Sipe J E 2017 Opt. Lett. 42 3638 [26] Demkowicz-Dobrzanski R, Dorner U, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A 2009 Phys. Rev. A 80 013825 [27] Wang J W, Sciarrino F, Laing A and Thompson M G 2020 Nat. Photonics 14 273 [28] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207 [29] Feng L T, Zhang M, Zhou Z Y, Chen Y, Li M, Dai D X, Ren H L, Guo G P, Guo G C, Tame M and Ren X F 2019 NPJ Quantum Inf. 5 90 [30] Paesani S, Ding Y, Santagati R, Chakhmakhchyan L, Vigliar C, Rottwitt K, Oxenlowe L K, Wang J W, Thompson M G and Laing A 2019 Nat. Phys. 15 925 [31] Zhang M, Feng L T, Zhou Z Y, Chen Y, Wu H, Li M, Gao S M, Guo G P, Guo G C and Dai D X 2019 Light Sci. Appl. 8 41 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|