Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114204    DOI: 10.1088/1674-1056/20/11/114204
RAPID COMMUNICATION Prev   Next  

A new quantum mechanical photon counting distribution formula

Yuan Hong-Chun(袁洪春)a)†, Fan Hong-Yi(范洪义)b), and Hu Li-Yun(胡利云) c)
a College of Optoelectronic Engineering, Changzhou Institute of Technology, Changzhou 213002, China; b Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China; c College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  By virtue of the density operator's P-representation in the coherent state representation, we derive a new quantum mechanical photon counting distribution formula. As its application, we calculate photon counting distributions for some given light fields. It is found that the pure squeezed state's photon counting distribution is related to the Legendre function, which is a new result.
Keywords:  P-representation      photon counting distribution      Laguerre polynomial      Legendre polynomial  
Received:  01 May 2011      Revised:  30 June 2011      Accepted manuscript online: 
PACS:  42.50.Ar  
  03.65.-w (Quantum mechanics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174114 and 11175113), the Research Foundation of Changzhou Institute of Technology, China (Grant No. YN1007), and the Research Foundation of Education Department of Jiangxi Province, China (Grant No. GJJ10097).

Cite this article: 

Yuan Hong-Chun(袁洪春), Fan Hong-Yi(范洪义), and Hu Li-Yun(胡利云) A new quantum mechanical photon counting distribution formula 2011 Chin. Phys. B 20 114204

[1] Orszag M 2000 Quantum Optics (Berlin: Springer-Verlag)
[2] Loudon R 1983 The Quantum Theory of Light (2nd edn.) (Oxford: Oxford University Press)
[3] Kelley P L and Kleiner W H 1964 Phys. Rev. 136 316
[4] Scully M O and Lamb J W E 1969 Phys. Rev. 179 368
[5] Mollow B R 1968 Phys. Rev. 168 1896
[6] Yuan H C, Xu X X and Fan H Y 2010 Chin. Phys. B 19 104205
[7] Mogilevtsev D, Řeháček J and Hradil Z 2009 Phys. Rev. A 79 020101
[8] Fan H Y and Hu L Y 2008 Opt. Lett. 33 443
[9] Fan H Y 2010 Chin. Phys. B 19 050303
[10] Yuan H C, Xu X X and Fan H Y 2010 Sci. China Ser. G: Phys. Mech. Astron. 53 1793
[11] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[12] Glauber R J 1963 Phys. Rev. 131 2766
[13] Sudarshan E C G 1963 Phys. Rev. Lett. 10 277
[14] Mehta C L 1967 Phys. Rev. Lett. 18 752
[15] Li H M and Yuan H C 2010 Int. J. Theor. Phys. 49 2121
[16] Rainville E D 1960 Special Functions (New York: MacMillan Company)
[17] Jiang N Q, Fan H Y and Hu L Y 2011 J. Phys. A: Math. Theor. 44 195302
[18] Xu X X, Yuan H C and Fan H Y 2011 Chin. Phys. B 20 024203
[19] Magnus W, Oberhettinger F and Soni R P 1966 Formulas and Theorems for the Special Functions of Mathematical Physics (Berlin: Springer-Verlag)
[20] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 4657
[21] Fan H Y and Zaidi H R 1987 Phys. Lett. A 123 303
[22] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley-VCH)
[1] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[2] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi (范洪义), He Rui (何锐), Da Cheng (笪诚), Liang Zu-Feng (梁祖峰). Chin. Phys. B, 2013, 22(8): 080301.
[3] Analytic solutions of the double ring-shaped Coulomb potential in quantum mechanics
Chen Chang-Yuan (陈昌远), Lu Fa-Lin (陆法林), Sun Dong-Sheng (孙东升), Dong Shi-Hai (董世海). Chin. Phys. B, 2013, 22(10): 100302.
No Suggested Reading articles found!