Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 040304    DOI: 10.1088/1674-1056/abe29c
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Taking tomographic measurements for photonic qubits 88 ns before they are created

Zhibo Hou(侯志博)1,2, Qi Yin(殷琪)1,2, Chao Zhang(张超)1,2, Han-Sen Zhong(钟翰森)1,2, Guo-Yong Xiang(项国勇)1,2,†, Chuan-Feng Li(李传锋)1,2, Guang-Can Guo(郭光灿)1,2, Geoff J. Pryde3, and Anthony Laing4,‡
1 Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Centre for Quantum Computation and Communication Technology (CQC2T) and Centre for Quantum Dynamics, Griffith University, Brisbane, 4111, Australia; 4 Quantum Engineering and Technology Laboratories, School of Physics and Department of Electrical and Electronic Engineering, University of Bristol, UK
Abstract  We experimentally demonstrate that tomographic measurements can be performed for states of qubits before they are prepared. A variant of the quantum teleportation protocol is used as a channel between two instants in time, allowing measurements for polarization states of photons to be implemented 88 ns before they are created. Measurement data taken at the early time and later unscrambled according to the results of the protocol's Bell measurements, produces density matrices with an average fidelity of 0.900.01 against the ideal states of photons created at the later time. Process tomography of the time reverse quantum channel finds an average process fidelity of 0.840.02. While our proof-of-principle implementation necessitates some post-selection, the general protocol is deterministic and requires no post-selection to sift desired states and reject a larger ensemble.
Keywords:  teleportation      tomography      time reverse  
Received:  27 November 2020      Revised:  27 November 2020      Accepted manuscript online:  03 February 2021
PACS:  03.65.Wj (State reconstruction, quantum tomography)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306400) and the National Natural Science Foundation of China (Grant Nos. 61905234, 11974335, 11574291, and 11774334). GP acknowledges support from the US Army Research Office (ARO) Grant No. W911NF-14-1-0133, and the Australian Research Council (DP140100648, CE170100012). Fellowship support from EPSRC is acknowledged by A.L. (EP/N003470/1).
Corresponding Authors:  Corresponding author. E-mail: gyxiang@ustc.edu.cn Corresponding author. E-mail: anthony.laing@bristol.ac.uk   

Cite this article: 

Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing Taking tomographic measurements for photonic qubits 88 ns before they are created 2021 Chin. Phys. B 30 040304

1 Moulder J F, Chastain J and King R C1995 Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data(Physical Electronics Eden Prairie, MN)
2 Williams D B and Carter C B1996 The transmission electron microscope(Springer)
3 Zewail A H 2000 J. Phys. Chem. A 104 5660
4 Lloyd S, Maccone L, Garcia-Patron R, Giovannetti V and Shikano Y 2011 Phys. Rev. D 84 025007
5 Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419
6 Peres A 2000 J. Mod. Opt. 47 139
7 Lloyd S, Maccone L, Garcia-Patron R, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.106.040403 2011 Phys. Rev. Lett. 106 040403
8 Aharonov Y and Vaidman L2008 Time in Quantum Mechanics(Berlin: Springer) pp. 399-447
9 Aharonov Y, Popescu S, Tollaksen J and Vaidman L 2009 Phys. Rev. A 79 052110
10 Oreshkov O and Cerf N J 2015 Nat. Phys. 11 853
11 Svetlichny G 2011 Inter. J. Theor. Phys. 50 3903
12 Jennewein T, Weihs G, Pan J W and Zeilinger A 2001 Phys. Rev. Lett. 88 017903
13 Ma X S, Zotter S, Koer J, Ursin R, Jennewein T, Brukner C and Zeilinger A 2012 Nat. Phys. 8 479
14 Megidish E, Halevy A, Shacham T, Dvir T, Dovrat L and Eisenberg H S 2013 Phys. Rev. Lett. 110 210403
15 Paris M G A and \vRehá\vcek J2004 Quantum State Estimation, Vol. 649 of Lecture Notes in Physics (Berlin: Springer)
16 James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312
17 Chuang I L and Nielsen M A 1997 J. Mod. Opt. 44 2455
18 Poyatos J F, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 78 390
19 Wallman J J and Flammia S T 2014 New J. Phys. 16 103032
20 Blume-Kohout, Gamble J K, Nielsen E, Rudinger K, Mizrahi J, Fortier K and Maunz P 2017 Nat. Commun. 8 1
21 Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
22 Barends R, Kelly J, Megrant A, et al. \hrefhttp://doi.org/10.1038/nature13171 2014 Nature 508 500
23 Carolan J, Harrold C, Sparrow C, et al. \hrefhttp://doi.org/10.1126/science.aab3642 2015 Science 349 711
24 Bloch I 2005 Nat. Phys. 1 23
25 Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
26 Bouwmeester D, Pan J W, Mattle K, Eible M, Weinfurter H and Zeilinger A 1997 Nature 390 575
27 Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
28 Marcikic I, De Riedmatten H, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509
29 Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
30 Wootters W K and Fields B D 1989 Annals of Physics 191 363
31 Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773
32 Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
33 Oreshkov O, Costa F and Brukner \vC 2012 Nat. Commun. 3 1092
34 Wolf F, Wan Y, Heip J C, Gebert F, Shi C and Schmidt P O 2016 Nature 530 457
35 Ballance C J, Schäfer V M, Home J P, et al. \hrefhttp://doi.org/10.1038/nature16184 2015 Nature 528 384
36 Gao W B, Imamoglu A, Bernien H and Hanson R 2015 Nat. Photon. 9 363
37 Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D and Liu Y K 2010 Nat. Commun. 1 149
38 Zhang C, Huang Y F, Wang Z, Liu B H, Li C F and Guo G C 2015 Phys. Rev. Lett. 115 260402
39 Je\vzek M, Fiurá\vsek J and Hradil Z 2003 Phys. Rev. A 68 012305
40 O'Brien J L, Pryde G J, Gilchrist A, James D F V, Langford N K, Ralph T C and White A G 2004 Phys. Rev. Lett. 93 080502
[1] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[2] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[3] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[4] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[5] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[6] Deep learning for image reconstruction in thermoacoustic tomography
Qiwen Xu(徐启文), Zhu Zheng(郑铸), and Huabei Jiang(蒋华北). Chin. Phys. B, 2022, 31(2): 024302.
[7] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[10] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[11] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[12] Magnetoacoustic position imaging for liquid metal in animal interstitial structure
Xiao-He Zhao(赵筱赫), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Yan-Hong Li(李艳红). Chin. Phys. B, 2020, 29(5): 054305.
[13] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[14] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[15] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
No Suggested Reading articles found!