Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Taking tomographic measurements for photonic qubits 88 ns before they are created |
Zhibo Hou(侯志博)1,2, Qi Yin(殷琪)1,2, Chao Zhang(张超)1,2, Han-Sen Zhong(钟翰森)1,2, Guo-Yong Xiang(项国勇)1,2,†, Chuan-Feng Li(李传锋)1,2, Guang-Can Guo(郭光灿)1,2, Geoff J. Pryde3, and Anthony Laing4,‡ |
1 Key Laboratory of Quantum Information, University of Science and Technology of China, CAS, Hefei 230026, China; 2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Centre for Quantum Computation and Communication Technology (CQC2T) and Centre for Quantum Dynamics, Griffith University, Brisbane, 4111, Australia; 4 Quantum Engineering and Technology Laboratories, School of Physics and Department of Electrical and Electronic Engineering, University of Bristol, UK |
|
|
Abstract We experimentally demonstrate that tomographic measurements can be performed for states of qubits before they are prepared. A variant of the quantum teleportation protocol is used as a channel between two instants in time, allowing measurements for polarization states of photons to be implemented 88 ns before they are created. Measurement data taken at the early time and later unscrambled according to the results of the protocol's Bell measurements, produces density matrices with an average fidelity of 0.900.01 against the ideal states of photons created at the later time. Process tomography of the time reverse quantum channel finds an average process fidelity of 0.840.02. While our proof-of-principle implementation necessitates some post-selection, the general protocol is deterministic and requires no post-selection to sift desired states and reject a larger ensemble.
|
Received: 27 November 2020
Revised: 27 November 2020
Accepted manuscript online: 03 February 2021
|
PACS:
|
03.65.Wj
|
(State reconstruction, quantum tomography)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306400) and the National Natural Science Foundation of China (Grant Nos. 61905234, 11974335, 11574291, and 11774334). GP acknowledges support from the US Army Research Office (ARO) Grant No. W911NF-14-1-0133, and the Australian Research Council (DP140100648, CE170100012). Fellowship support from EPSRC is acknowledged by A.L. (EP/N003470/1). |
Corresponding Authors:
†Corresponding author. E-mail: gyxiang@ustc.edu.cn ‡Corresponding author. E-mail: anthony.laing@bristol.ac.uk
|
Cite this article:
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing Taking tomographic measurements for photonic qubits 88 ns before they are created 2021 Chin. Phys. B 30 040304
|
1 Moulder J F, Chastain J and King R C1995 Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data(Physical Electronics Eden Prairie, MN) 2 Williams D B and Carter C B1996 The transmission electron microscope(Springer) 3 Zewail A H 2000 J. Phys. Chem. A 104 5660 4 Lloyd S, Maccone L, Garcia-Patron R, Giovannetti V and Shikano Y 2011 Phys. Rev. D 84 025007 5 Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 6 Peres A 2000 J. Mod. Opt. 47 139 7 Lloyd S, Maccone L, Garcia-Patron R, et al. \hrefhttp://doi.org/10.1103/PhysRevLett.106.040403 2011 Phys. Rev. Lett. 106 040403 8 Aharonov Y and Vaidman L2008 Time in Quantum Mechanics(Berlin: Springer) pp. 399-447 9 Aharonov Y, Popescu S, Tollaksen J and Vaidman L 2009 Phys. Rev. A 79 052110 10 Oreshkov O and Cerf N J 2015 Nat. Phys. 11 853 11 Svetlichny G 2011 Inter. J. Theor. Phys. 50 3903 12 Jennewein T, Weihs G, Pan J W and Zeilinger A 2001 Phys. Rev. Lett. 88 017903 13 Ma X S, Zotter S, Koer J, Ursin R, Jennewein T, Brukner C and Zeilinger A 2012 Nat. Phys. 8 479 14 Megidish E, Halevy A, Shacham T, Dvir T, Dovrat L and Eisenberg H S 2013 Phys. Rev. Lett. 110 210403 15 Paris M G A and \vRehá\vcek J2004 Quantum State Estimation, Vol. 649 of Lecture Notes in Physics (Berlin: Springer) 16 James D F V, Kwiat P G, Munro W J and White A G 2001 Phys. Rev. A 64 052312 17 Chuang I L and Nielsen M A 1997 J. Mod. Opt. 44 2455 18 Poyatos J F, Cirac J I and Zoller P 1997 Phys. Rev. Lett. 78 390 19 Wallman J J and Flammia S T 2014 New J. Phys. 16 103032 20 Blume-Kohout, Gamble J K, Nielsen E, Rudinger K, Mizrahi J, Fortier K and Maunz P 2017 Nat. Commun. 8 1 21 Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091 22 Barends R, Kelly J, Megrant A, et al. \hrefhttp://doi.org/10.1038/nature13171 2014 Nature 508 500 23 Carolan J, Harrold C, Sparrow C, et al. \hrefhttp://doi.org/10.1126/science.aab3642 2015 Science 349 711 24 Bloch I 2005 Nat. Phys. 1 23 25 Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895 26 Bouwmeester D, Pan J W, Mattle K, Eible M, Weinfurter H and Zeilinger A 1997 Nature 390 575 27 Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121 28 Marcikic I, De Riedmatten H, Tittel W, Zbinden H and Gisin N 2003 Nature 421 509 29 Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516 30 Wootters W K and Fields B D 1989 Annals of Physics 191 363 31 Kwiat P G, Waks E, White A G, Appelbaum I and Eberhard P H 1999 Phys. Rev. A 60 R773 32 Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044 33 Oreshkov O, Costa F and Brukner \vC 2012 Nat. Commun. 3 1092 34 Wolf F, Wan Y, Heip J C, Gebert F, Shi C and Schmidt P O 2016 Nature 530 457 35 Ballance C J, Schäfer V M, Home J P, et al. \hrefhttp://doi.org/10.1038/nature16184 2015 Nature 528 384 36 Gao W B, Imamoglu A, Bernien H and Hanson R 2015 Nat. Photon. 9 363 37 Cramer M, Plenio M B, Flammia S T, Somma R, Gross D, Bartlett S D, Landon-Cardinal O, Poulin D and Liu Y K 2010 Nat. Commun. 1 149 38 Zhang C, Huang Y F, Wang Z, Liu B H, Li C F and Guo G C 2015 Phys. Rev. Lett. 115 260402 39 Je\vzek M, Fiurá\vsek J and Hradil Z 2003 Phys. Rev. A 68 012305 40 O'Brien J L, Pryde G J, Gilchrist A, James D F V, Langford N K, Ralph T C and White A G 2004 Phys. Rev. Lett. 93 080502 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|