|
|
Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities |
Wang Xiao-Xia(王晓霞), Zhang Jian-Qi(张建奇), Yu Ya-Fei(於亚飞)†, and Zhang Zhi-Ming(张智明)‡ |
Laboratory of Photonic Information Technology, SIPSE and LQIT, South China Normal University, Guangzhou 510006, China |
|
|
Abstract We propose a scheme for realizing two-qubit controlled phase gates on two nonidentical quantum dots trapped in separate cavities. In our scheme, each dot simultaneously interacts with one highly detuned cavity mode and two strong driven classical fields. During the gate operation, the quantum dots undergo no transition, while the system can acquire different phases conditional on different states of the quantum dots. With the application of the single-qubit operations, two-qubit controlled phase gates can be realized.
|
Received: 04 April 2011
Revised: 30 June 2011
Accepted manuscript online:
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
42.50.Pq
|
(Cavity quantum electrodynamics; micromasers)
|
|
73.21.La
|
(Quantum dots)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60978009) and the National Basic Research
Program of China (Grant Nos. 2007CB925204 and 2009CB929604). |
Cite this article:
Wang Xiao-Xia(王晓霞), Zhang Jian-Qi(张建奇), Yu Ya-Fei(於亚飞), and Zhang Zhi-Ming(张智明) Controlled phase gates based on two nonidentical quantum dots trapped in separate cavities 2011 Chin. Phys. B 20 110306
|
[1] |
Englund D, Faraon A, Fushman I, Ellis B and Vučković J 2009 (1st edn.) Single Semiconductor Quantum Dots (Berlin: Springer) pp. 299–329
|
[2] |
Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
|
[3] |
Duan L M and Kimble H J 2004 Phys. Rev. Lett. 92 127902
|
[4] |
Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y and Vukovi J 2005 Phys. Rev. Lett. 95 013904
|
[5] |
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
|
[6] |
Kimble H J 2008 Nature 453 1023
|
[7] |
Shao X Q, Chen L and Zhang S 2009 Chin. Phys. B 18 440
|
[8] |
Tang S Q, Zhang D Y, Xie L J, Zhan X G and Gao F 2009 Chin. Phys. B 18 56
|
[9] |
Monroe C, Meekhof D M, King B E, Itano W M and Wineland D J 1995 Phys. Rev. Lett. 75 4714
|
[10] |
Chiaverini J, Leibfried D, Schaetz T, Barrett M D, Blakestad R B, Britton J, Itano W M, Jost J D, Knill E, Langer C, Ozeri R and Wineland D J 2005 Nature 432 602
|
[11] |
Liu W Y, Bi S W and Dou X B 2010 Acta Phys. Sin. 59 1780 (in Chinese)
|
[12] |
Xu Y Y, Zhou F, Zhang X L and Feng M 2010 Chin. Phys. B 19 090317
|
[13] |
Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, Loss D, Sherwin M and Small A 1999 Phys. Rev. Lett. 83 4204
|
[14] |
Turchette Q, Hood C, Lange W, Mabuchi H and Kimble H J 1995 Phys. Rev. Lett. 75 4710
|
[15] |
Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
|
[16] |
Nogues G, Rauschenbeutel A, Osnaghi S, Brune M, Raimond J M and Haroche S 1999 Nature 400 239
|
[17] |
Englund D, Fattal D, Waks E, Solomon G, Zhang B, Nakaoka T, Arakawa Y, Yamamoto Y and Vukovi J 2005 Phys. Rev. Lett. 95 013904
|
[18] |
Yoshie T, Scherer A, Hendrickson J, Khitrova G, Gibbs H M, Rupper G, Ell C, Shchekin O B and Deppe D G 2004 Nature 432 200
|
[19] |
Hennessy K, Badolato A, Winger M, Gerace D, Atature M, Gulde S, Falt S, Hu E L and Imamoglu A 2007 Nature 445 896
|
[20] |
Imamoğlu A, Falt S, Dreiser J, Fernandez G, Atature M, Hennessy K, Badolato A and Gerace D 2007 J. Appl. Phys. 101 081602
|
[21] |
Petta J R , Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
|
[22] |
Nazir A, Lovett B W, Andrew G and Briggs D 2004 Phys. Rev. A 70 052301
|
[23] |
Zhang J Q, Yu Y F and Zhang Z M 2010 Phys. Rev. A 374 3818
|
[24] |
Kim H, Thon S M, Petroff P M and Bouwmeester D 2009 Appl. Phys. Lett. 95 243107
|
[25] |
Craig N J, Taylor J M, Lester E A, Marcus C M, Hanson M P and Gossard A C 2004 Science 304 565
|
[26] |
Xu X, Wu Y, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
|
[27] |
Feng X L, Wu C F, Sun H and Oh C H 2009 Phys. Rev. Lett. 103 200501
|
[28] |
James D F V and Jerke J 2007 Can. J. Phys. 85 325
|
[29] |
Guzman R, Retamal J C, Solano E and Zagury N 2006 Phys. Rev. Lett. 96 010502
|
[30] |
Zhang J Q, Yu Y F and Zhang Z M 2011 arXiv:1104.2456v1
|
[31] |
Zhang J Q, Yu Y F, Feng X L and Zhang Z M 2011 arXiv:1012.0928v3
|
[32] |
Yao P and Hughes S 2009 Opt. Express 17 11505
|
[33] |
Laucht A, Neumann A, Villas-Boas J M, Bichler M, Amann M C and Finley J J 2008 Phys. Rev. B 77 161303
|
[34] |
Atature M, Dreiser J, Badolato A, Hogele Al, Karrai K and Mamoglu A I 2006 Science 312 551
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|