|
|
Using a quantum dot system to realize perfect state transfer |
Li Ji(李季), Wu Shi-Hai(吴世海), Zhang Wen-Wen(张雯雯), and Xi Xiao-Qiang(惠小强)† |
School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710061, China |
|
|
Abstract There are some disadvantages to Nikolopoulos et al.'s protocol [Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297] where a quantum dot system is used to realize quantum communication. To overcome these disadvantages, we propose a protocol that uses a quantum dot array to construct a four-qubit spin chain to realize perfect quantum state transfer (PQST). First, we calculate the interaction relation for PQST in the spin chain. Second, we review the interaction between the quantum dots in the Heitler-London approach. Third, we present a detailed program for designing the proper parameters of a quantum dot array to realize PQST.
|
Received: 27 January 2011
Revised: 14 May 2011
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by the Natural Science Foundation of Shaanxi Province of China (Grant No. 2009JQ8006). |
Cite this article:
Li Ji(李季), Wu Shi-Hai(吴世海), Zhang Wen-Wen(张雯雯), and Xi Xiao-Qiang(惠小强) Using a quantum dot system to realize perfect state transfer 2011 Chin. Phys. B 20 100308
|
[1] |
Nikolopoulos G M, Petrosyan D and Lambropoulos P 2004 Europhys. Lett. 65 297
|
[2] |
Petrosyan D and Lambropoulos P 2006 Opt. Commun. 264 419
|
[3] |
Bose S 2003 Phys. Rev. Lett. 91 207901
|
[4] |
Li Y, Shi T, Chen B, Song Z and Sun C P 2005 Phys. Rev. A 71 022301
|
[5] |
Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
|
[6] |
Osborne T J and Linden N 2004 Phys. Rev. A 69 052315
|
[7] |
Kostak V, Nikolopoulos G M and Jex I 2007 Phys. Rev. A 75 042319
|
[8] |
Xi X Q, Gong J B, Zhang T, Yue R H and Liu W M 2008 Eur. Phys. J. D 50 193
|
[9] |
Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
|
[10] |
Bayer M, Hawrylak P, Hinzer K, Fafard S, Korkusinski M, Wasilewski Z R, Stern O and Forchel A 2001 Science 291 451
|
[11] |
Santori C, Tamarat P, Neumann P, Wrachtrup J, Fattal D, Beausoleil R G, Rabeau J, Olivero P, Greentree A D, Prawer S, Jelezko F and Hemmer P 2006 Phys. Rev. Lett. 97 247401
|
[12] |
Neumann P, Kolesov R, Naydenov B, Beck J, Rempp F, Steiner M, Jacques V, Balasubramanian G, Markham M L, Twitchen D J, Pezzagna S, Meijer J, Twamley J, Jelezko F and Wrachtrup J 2010 Nature Phys. 6 249
|
[13] |
Burkard G and Loss D 1999 Phys. Rev. B 59 2070
|
[14] |
Amasha S, MacLean K, Radu Iuliana P, Zumbühl D M, Kastner M A, Hanson M P and Gossard A C 2008 Phys. Rev. Lett. 100 046803
|
[15] |
Koppens F H L, Buizert C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2005 Nature 442 766
|
[16] |
Nowack K C, Koppens F H L, Nazarov Y V and Vandersypen L M K 2007 Science 318 1430
|
[17] |
Mikkelsen M H, Berezovsky J, Stoltz N G, Coldren L A and Awschalom D D 2007 Nature Phys. 3 770
|
[18] |
Press D, Ladd T D, Zhang B Y and Yamamoto Y 2008 Nature 456 218
|
[19] |
Elzerman J M, Hanson R, Willems van Beveren L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
|
[20] |
Hanson R, Willems van Beveren L H, Vink I T, Elzerman J M, Naber W J M, Koppens F H L, Kouwenhoven L P and Vandersypen L M K 2005 Phys. Rev. Lett. 94 196802
|
[21] |
Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
|
[22] |
Sanderson K 2009 Nature 459 760
|
[23] |
Hanson R and Awschalom David D 2008 Nature 453 1043
|
[24] |
Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2008 Rev. Mod. Phys. 79 1217
|
[25] |
Mattis D C 1965 The Theory of Magnetism (New York: Harper and Row)
|
[26] |
Bennett C H, DiVincenzo D P, Bacon D, Burkard G and Whaley K B 2000 Nature 408 339
|
[27] |
Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters K 1993 Phys. Rev. Lett. 70 1895
|
[28] |
Herring C 1962 Rev. Mod. Phys. 34 4
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|