|
|
A two-step quantum secure direct communication protocol with hyperentanglement |
Gu Bin(顾斌)a)b)†, Huang Yu-Gai(黄余改) c), Fang Xia(方夏)c), and Zhang Cheng-Yi(张成义)a)b) |
a College of Mathematics and Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China; b The Photonic Technology Laboratory, Nanjing University of Information Science and Technology, Nanjing 210044, China; c Jiangsu Institute of Education, Nanjing 210013, China |
|
|
Abstract We propose a two-step quantum secure direct communication (QSDC) protocol with hyperentanglement in both the spatial-mode and the polarization degrees of freedom of photon pairs which can in principle be produced with a beta barium borate crystal. The secret message can be encoded on the photon pairs with unitary operations in these two degrees of freedom independently. This QSDC protocol has a higher capacity than the original two-step QSDC protocol as each photon pair can carry 4 bits of information. Compared with the QSDC protocol based on hyperdense coding, this QSDC protocol has the immunity to Trojan horse attack strategies with the process for determining the number of the photons in each quantum signal as it is a one-way quantum communication protocol.
|
Received: 26 April 2011
Revised: 20 May 2011
Accepted manuscript online:
|
PACS:
|
03.67.Hk
|
(Quantum communication)
|
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Fund: Project supported by the Natural Science Foundation of Jiangsu Provincial Universities, China (Grant No. 10KJB180004). |
Cite this article:
Gu Bin(顾斌), Huang Yu-Gai(黄余改), Fang Xia(方夏), and Zhang Cheng-Yi(张成义) A two-step quantum secure direct communication protocol with hyperentanglement 2011 Chin. Phys. B 20 100309
|
[1] |
Bennett C H and Brassad G 1984 Proc. IEEE Int. Conf. Computers, Systems and Signal Processing Bangalore, India (New York: IEEE) p. 175
|
[2] |
Gisin N, Ribordy G, Tittel W and Zbinden H 2002 emphRev. Mod. Phys. 74 145
|
[3] |
Li X H, Duan X J, Sheng Y B, Zhou H Y and Deng F G 2009 Chin. Phys. B 18 3710
|
[4] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[5] |
Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
|
[6] |
Deng F G and Long G L 2004 Phys. Rev. A 69 052319
|
[7] |
Boström K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
|
[8] |
Cai Q Y and Li B W 2004 Chin. Phys. Lett. 21 601
|
[9] |
Wang C, Deng F G, Li Y S, Zhou P and Zhou H Y 2005 Phys. Rev. A 71 044305
|
[10] |
Wang C, Deng F G and Long G L 2005 Opt. Commun. 253 15
|
[11] |
Deng F G, Li X H, Li C Y, Zhou P and Zhou H Y 2006 Phys. Lett. A 359 359
|
[12] |
Li X H, Li C Y, Deng F G, Zhou P, Liang Y and Zhou H Y 2007 Chin. Phys. 16 2149
|
[13] |
Long G L, Deng F G, Wang C, Li X H, Wen K and Wang W Y 2007 Front. Phys. Chin. 2 251
|
[14] |
Qin S J, Wen Q Y, Meng L M and Zhu F C 2009 Sci. Chin. G 52 1208
|
[15] |
Gu B, Zhang C Y, Cheng G S and Huang Y G 2011 Sci. Chin. G 54 942
|
[16] |
Beige A, Englert B G, Kurtsiefer C and Weinfurter H 2002 Acta Phys. Pol. A 101 357
|
[17] |
Yan F L and Zhang X 2004 Eur. Phys. J. B 41 75
|
[18] |
Gao T, Yan F L and Wang Z X 2004 Nuovo Cimento Della Societa Italiana Di Fisica B 119 313
|
[19] |
Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 18
|
[20] |
Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
|
[21] |
Gao T, Yan F L and Wang Z X 2005 J. Phys. A: emphMath. Gen. 38 5761
|
[22] |
Gao T, Yan F L and Wang Z X 2005 Int. J. Mod. Phys. C 16 1293
|
[23] |
Cao H J and Song H S 2006 Chin. Phys. Lett. 23 290
|
[24] |
Li X H, Deng F G, Li C Y, Liang Y J, Zhou P and Zhou H Y 2006 J. Korean Phys. Soc. 49 1354
|
[25] |
Zhu A D, Xia Y, Fan Q B and Zhang S L 2006 Phys. Rev. A 73 022338
|
[26] |
Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
|
[27] |
Wang C, Li Y S and Long G L 2006 Commun. Theor. Phys. 46 440
|
[28] |
Yang J, Wang C and Zhang R 2010 Chin. Phys. B 19 110306
|
[29] |
Zhang X L, Zhang Y X and Wei H 2009 Chin. Phys. B 18 435
|
[30] |
Liu W J, Chen H W, Ma T H, Li Z Q, Liu Z H and Hu W B 2009 Chin. Phys. B 18 4105
|
[31] |
Wang J, Zhang Q and Tang C J 2006 Phys. Lett. A 358 256
|
[32] |
Gu B, Pei S X, Song B and Zhong K 2009 Sci. Chin. G 52 1913
|
[33] |
Cao W F, Yang Y G and Wen Q Y 2010 Sci. Chin. G 53 1271
|
[34] |
W'ojcik A 2003 Phys. Rev. Lett. 90 157901
|
[35] |
Wang W Y, Wang C, Zhang G Y and Long G L 2009 Chin. Sci. Bull. 54 158
|
[36] |
Deng F G and Long G L 2006 Commun. Theor. Phys. 46 443
|
[37] |
Hao L, Wang C and Long G L 2010 J. Phys. B 43 125502
|
[38] |
Wen K and Long G L 2010 Int. J. Quantum Inform. 8 697
|
[39] |
Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
|
[40] |
Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
|
[41] |
Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315
|
[42] |
Wang C, Sheng Y B, Li X H, Deng F G, Zhang W and Long G L 2009 Sci. Chin.: Tech. Sci. 52 3464
|
[43] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
|
[44] |
Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
|
[45] |
Barreiro J T, Wei T C and Kwiat P G 2008 Nature Phys. 4 282
|
[46] |
Wang W Y, Wang C and Long G L 2009 Int. J. Quantum Inform. 7 529
|
[47] |
Sheng Y B, Deng F G and Long G L 2010 Phys. Rev. A 82 032318
|
[48] |
Wang T J, Li T, Du F F and Deng F G 2011 Chin. Phys. Lett. 28 040305, arXiv: 1103.0471
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|