Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 086801    DOI: 10.1088/1674-1056/19/8/086801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The equilibrium composition in GexSi1-x/Si self-assembled alloy quantum dot

Wang Dong-Lin(王东林), Yu Zhong-Yuan(俞重远), Liu Yu-Min (刘玉敏), Ye Han(叶寒), Lu Peng-Fei(芦鹏飞), Zhao Long(赵龙), and Guo Xiao-Tao(郭晓涛)
Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), Ministry of Education, Beijing 100876, China
Abstract  The equilibrium composition in strained quantum dot is the result of both elastic relaxation and chemical mixing effects, which have a direct relationship to the optical and electronic properties of the quantum-dot-based device. Using the method of moving asymptotes and finite element tools, an efficient technique has been developed to compute the composition profile by minimising the Gibbs free energy in self-assembled alloy quantum dot. In this paper, the composition of dome-shaped GexSi1-x/Si quantum dot is optimised, and the contribution of the different energy to equilibrium composition is discussed. The effect of composition on the critical size for shape transition of pyramid-shaped GeSi quantum dot is also studied.
Keywords:  equilibrium composition      quantum dot      method of moving asymptotes  
Received:  13 November 2009      Revised:  09 March 2010      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  62.20.D- (Elasticity)  
  65.80.+n  
  78.67.Hc (Quantum dots)  
  81.16.Dn (Self-assembly)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405), the National Natural Science Foundation of China (Grant Nos. 60908028, 60971068, 10979065, and 10947150) and the High School Innovation and Introducing Talent Project of China (Grant No. B07005).

Cite this article: 

Wang Dong-Lin(王东林), Yu Zhong-Yuan(俞重远), Liu Yu-Min (刘玉敏), Ye Han(叶寒), Lu Peng-Fei(芦鹏飞), Zhao Long(赵龙), and Guo Xiao-Tao(郭晓涛) The equilibrium composition in GexSi1-x/Si self-assembled alloy quantum dot 2010 Chin. Phys. B 19 086801

[1] Wang T Q, Yu Z Y, Liu Y M and Lu P F 2009 Acta Phys. Sin. 58 5618 (in Chinese)
[2] Song Y X, Yu Z Y and Liu Y M 2008 Acta Phys. Sin. 57 2399 (in Chinese)
[3] Zhou W M, Wang C Y, Chen Y H and Wang Z G 2006 Chin. Phys. 15 1315
[4] Huang S S, Niu Z C, Zhan F, Ni H Q, Zhao H, Wu D H and Sun Z 2008 Chin. Phys. B 17 323
[5] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 881
[6] Rastelli A, Stoffel M, Malachias A, Merdzhanova T, Katsaros G, Kern K, Metzger T H and Schmidt O G 2008 Nano Lett. 8 1404
[7] Katsaros G, Costantini G, Stoffel M, Esteban R, Bittner A, Rastelli A, Denker U, Schmidt O G and Kern K 2005 Phys. Rev. B 72 195320
[8] Medeiros-Ribeiro G and Williams R S 2007 Nano Lett. 7 223
[9] Spencer B J and Blanariu M 2005 Phys. Rev. Lett. 95 206101
[10] Uhl'hi k F, Gatti R and Montalenti F 2009 J. Phys.: Condens. Matter 21 084217
[11] Medhekar N V, Hegadekatte V and Shenoy V B 2008 Phys. Rev. Lett. 100 106104
[12] Hadjisavvas G and Kelires P C 2005 Phys. Rev. B 72 075334
[13] Shchukin V A, Ledentsov N N, Kop'ev P S and Bimberg D 1995 Phys. Rev. Lett. 75 2968
[14] Medeiros-Ribeiro G, Alexander M B, Theodore I K, Douglas A A O and Stanley Williams R 1998 Science 279 353
[15] Ross F M, Tersoff J and Tromp R M 1998 Phys. Rev. Lett. 80 984
[16] Rastelli A, Kummer M and Von K"anel H 2001 Phys. Rev. Lett. 87 256101
[17] Kittel C and Kroemer H 1980 Thermal Physics (San Francisco: Freeman) p122
[18] Bernard J E, Froyen S and Zunger A 1991 Phys. Rev. B 44 1663
[19] Malachias A, Sch"ulli T U, Medeiros-Ribeiro G, Canccado L G, Stoffel M, Schmidt O G, Metzger T H and Magalhaes-Paniago R 2005 Phys. Rev. B 72 165315
[20] Raiteri P and Miglio L 2002 Phys. Rev. B 66 235408
[21] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2008 Chin. Phys. B 17 9
[22] Liu Y M, Yu Z Y, Yang H B and Huang Y Z 2006 Acta Phys. Sin. 55 5023 (in Chinese)
[23] Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 16
[24] Liu Y M, Yu Z Y, Ren X M and Xu Z H 2009 Chin. Phys. B 18 4136
[25] Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359
[26] Medeiros-Ribeiro G, Malachias A Kycia S, Magalhaes-Paniago R, Kamins T I and Williams R S 2005 Appl. Phys. A 80 1211
[27] Marina S L, Malachias A, Kycia S W, Kamins T I, Williams R S and Medeiros-Ribeiro G 2008 Phys. Rev. Lett. 100 226101
[28] Tsao J 1993 Materials Fundamentals of Molecular Beam Epitaxy (New York: Academic Press) p. 158
[29] Gatti R, Marzegalli A, Zinovyev V A, Montalenti F and Miglio L 2008 Phys. Rev. B 78 184104
[30] Wang M Z, Cheng Y C and Chong Y W 2008 Appl. Surf. Sci. 255 240
[31] Cai C Y and Zhou W M 2007 Acta Phys. Sin. 56 8 (in Chinese)
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[9] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[10] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[11] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!